Measurement of Three-Phase Relative Permeability With IFT Variation

Author:

Cinar Yildiray1,Orr Franklin M.1

Affiliation:

1. Stanford U.

Abstract

Summary In this paper, we present results of an experimental investigation of the effects of variations in interfacial tension (IFT) on three-phase relative permeability. We report results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. To create three-phase systems in which IFT can be controlled systematically, we used a quaternary liquid system composed of hexadecane (C16), n-butanol (NBA), water (H2O), and isopropanol (IPA). Measured equilibrium phase compositions and IFTs are reported. The reported phase behavior of the quaternary system shows that the H2O-rich phase should represent the "gas" phase, the NBA-rich phase should represent the "oil" phase, and the C16-rich phase should represent the "aqueous" phase. Therefore, we used oil-wet Teflon (PTFE) bead packs to simulate the fluid flow in a water-wet oil reservoir. We determined phase saturations and three-phase relative permeabilities from recovery and pressure-drop data using an extension of the combined Welge/Johnson-Bossler-Naumann (JBN) method to three-phase flow. Measured three-phase relative permeabilities are reported. The experimental results indicate that the wetting-phase relative permeability was not affected by IFT variation, whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases, the oil and gas phases become more mobile at the same phase saturations. For gas/oil IFTs in the range of 0.03 to 2.3 mN/m, we observed an approximately 10-fold increase in the oil and gas relative permeabilities against an approximately 100-fold decrease in the IFT.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3