Perturbative-Integro-Differential Solution for the Nonlinear Hydraulic Diffusivity Equation for Infinite-Acting-Oil Flow in a Permeability-Pressure-Sensitive Reservoir

Author:

Fernandes Fernando Bastos1

Affiliation:

1. Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and Petrobras

Abstract

Summary The nonlinear hydraulic diffusivity equation (NHDE) models the isothermal single-phase Darcian flow through porous media considering the variation in the properties of the rock and the fluid present inside its pores. Typically, the dimensionless solution of the linear hydraulic diffusivity equation (LHDE) pD⁢(rD,tD) for constant permeability oil flow in porous media is computed through Laplace and Fourier transform or Boltzmann transformation. For these cases, the dimensionless general solution in cylindrical coordinates is expressed by the transcendental function exponential integral Ei(rD,tD). This work develops analytically a new coupled perturbative-integro-differential model to solve the NHDE for oil flow in a permeability-pressure-sensitive reservoir with source. The general solution is computed combining a first-order asymptotic series expansion, Green’s functions (GF), and a Volterra’s second kind integro-differential formulation. A set of pore pressure and permeability values for two sandstones samples in an offshore reservoir from Brazil is obtained experimentally using the geomechanical elastic parameters (e.g., the Young’s modulus and Poisson’s ratio in addition to a uniaxial cell). These data are used as input in the computational code to run the analytical model and evaluate the reservoir permeability change. After these data input, the model runs and it allows to compute the instantaneous reservoir permeability values over the well-reservoir life cycle. The model calibration is performed by comparing the developed solution with a numerical porous media oil flow simulator named IMEX®, widely used in reservoir engineering and well-testing field operations and scientific works. The general solution of the NHDE mD(rD,tD) is computed by the sum of the linear solution pD(rD,tD) (constant permeability) and the first-order term of the asymptotic series expansion mD(1)(rD,tD), composed of the nonlinearity present in solution caused by the reservoir permeability variation. The results have shown that the developed solution is accurate, when compared to the numerical simulator, providing to be an attractive mathematical tool to help the well-reservoir management due to its low computational costs, when compared to the numerical simulators acquisition costs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference60 articles.

1. Fundamentals of Reservoir Fluid Flow

2. Interrelationships of Rock Elastics Properties to Petrophysical Pore Structure and Geometric Details of Sandstone;Akbar,2019

3. The Flow of Real Gases Through Porous Media;Al-Hussainy;J Pet Technol,1966

4. A Variable-Rate Solution to the Nonlinear Diffusivity Gas Equation by Use of Green’s-Function Method;Barreto;SPE J.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3