A Variable-Rate Solution to the Nonlinear Diffusivity Gas Equation by Use of Green's-Function Method

Author:

Barreto Abelardo B.1,Peres Alvaro M.M.1,Pires Adolfo P.2

Affiliation:

1. Petrobras

2. Universidade Estadual do Norte Fluminense

Abstract

Summary The hydraulic diffusivity equation that governs the flow of compressible fluids in porous media is nonlinear. Although the gas-well test analysis by means of the pseudopressure function has become a standard field practice, the effect of viscosity and gas-compressibility variation with pressure is often neglected. Moreover, in field operations, the gas well is submitted to a variable rate production to determine well/reservoir properties and an estimation of the absolute open flow (AOF). For slightly compressible fluids, variable rate can be properly handled by superposition in time. Unfortunately, superposition cannot be casually justified for gas reservoirs because of its nonlinear behavior. In this paper, a general solution that properly accounts for both fluid property behavior and variable rate is presented. The proposed solution, which is derived from the Green's-function method by recasting the effect of the viscosity-compressibility product variation as a nonlinear source term, can handle variable gas rate for several well/reservoir geometries of practical interest. From the general solution, an analytical expression for variable-rate tests of a fully penetrating vertical well in an infinite gas reservoir is derived. This expression is applied to a synthetic data set to calculate the pressure response for a buildup test in an infinite homogeneous reservoir. The results compared with a commercial finite-difference numerical simulator show close agreement for both drawdown and buildup periods. It is also shown that the dimensionless pseudopressure converges to the slightly compressible fluid solution for long shut-in times. Thus, during those long times, Horner analysis and log-log derivative plot can be applied to obtain good estimation of reservoir parameters, as discussed previously in literature.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3