Abstract
Summary
The present work introduces extended dynamic mode decomposition (EDMD) as a suitable data-driven framework for learning the reservoir dynamics entailed by flow/fracture interactions in unconventional shales. The proposed EDMD approach builds on the approximation of infinite-dimensional linear operators combined with the power of deep learning autoencoder networks to extract salient transient features from pressure/stress fields and bulks of production data. The data-driven model is demonstrated on three illustrative examples involving single- and two-phase coupled flow/geomechanics simulations and a real production data set from the Vaca Muerta unconventional shale formation in Argentina. We demonstrated that we could attain a high level of predictability from unseen field-state variables and well-production data given relatively moderate input requirements. As the main conclusion of this work, EDMD stands as a promising data-driven choice for efficiently reconstructing flow/fracture dynamics that are either partially or entirely unknown, or that are too complex to formulate using known simulation tools on unconventional plays.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献