Data-Driven Prediction of Unconventional Shale-Reservoir Dynamics

Author:

Klie Hector1,Florez Horacio2

Affiliation:

1. DeepCast, LLC

2. Texas A&M University

Abstract

Summary The present work introduces extended dynamic mode decomposition (EDMD) as a suitable data-driven framework for learning the reservoir dynamics entailed by flow/fracture interactions in unconventional shales. The proposed EDMD approach builds on the approximation of infinite-dimensional linear operators combined with the power of deep learning autoencoder networks to extract salient transient features from pressure/stress fields and bulks of production data. The data-driven model is demonstrated on three illustrative examples involving single- and two-phase coupled flow/geomechanics simulations and a real production data set from the Vaca Muerta unconventional shale formation in Argentina. We demonstrated that we could attain a high level of predictability from unseen field-state variables and well-production data given relatively moderate input requirements. As the main conclusion of this work, EDMD stands as a promising data-driven choice for efficiently reconstructing flow/fracture dynamics that are either partially or entirely unknown, or that are too complex to formulate using known simulation tools on unconventional plays.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3