A Physics-Informed Neural Network for Temporospatial Prediction of Hydraulic-Geomechanical Processes

Author:

Zhang Chi1,Wang Shihao2,Wu Yu-Shu1

Affiliation:

1. Colorado School of Mines

2. Chevron

Abstract

AbstractThis work aims to quantify the temporal and spatial evolution of pressure and stress fields in poroelastic reservoirs by replacing the conventional reservoir-geomechanical simulators with a novel convolutional-recurrent network (CNN-RNN) proxy. The proposed convolutional-recurrent neural network uses the governing equations of the coupled hydraulic-geomechanical process as the loss function. Initial conditions and spatial rock property fields are taken as inputs to predict the variation of pressure and stress fields. A customized convolutional filter mimicking the higher-order finite difference approach is adopted to improve the solution accuracy of the network.We apply the neural network to solve one synthetic 2D hydraulic-geomechanical problem. The pressure and stress fields predicted from our neural network are compared with the reference numerical solutions derived from the finite difference method. The performance exhibits the potential of the proposed deep learning model for hydraulic-geomechanical processes simulation. The predicted pressure field displays a high degree of accuracy up to 95%, while the error in stress prediction is slightly higher due to the limitation of the current adopted neural network. In particular, our model outperforms the traditional second-order finite difference method in both speed and accuracy. Overall, the work shows the capability of the neural network to capture temporospatial prediction in hydraulic-geomechanical processes.

Publisher

SPE

Reference28 articles.

1. Prediction of porous media fluid flow using physics informed neural networks;Almajid;Journal of Petroleum Science and Engineering,2022

2. Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media.;Amini,2022

3. Physics-informed deep learning for flow and deformation in poroelastic media;Bekele,2020

4. Neural ordinary differential equations;Chen;Advances in neural information processing systems,2018

5. Fraces, C.G. and Tchelepi, H., 2021, October. Physics informed deep learning for flow and transport in porous media. In SPE Reservoir Simulation Conference. OnePetro.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3