Multiscale Wettability Characterization of Anhydrite-Rich Carbonate Rocks: Insights into Zeta Potential, Flotation, and Contact Angle Measurements

Author:

Isah Abubakar1ORCID,Mahmoud Mohamed1ORCID,Kamal Muhammad Shahzad2ORCID,Arif Muhammad3ORCID,Jawad Murtada Al2ORCID

Affiliation:

1. Petroleum Engineering Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (Corresponding author)

2. Petroleum Engineering Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals

3. Department of Petroleum Engineering, Khalifa University

Abstract

Summary Anhydrite (CaSO4) is a chemically reactive rock/mineral found predominantly as a constituent of carbonates. The main constituents of anhydrite are calcium and sulfate ions. The presence of anhydrite, its distribution, and the associated anhydrite-fluid interactions are important to precisely evaluate the effectiveness of oil recovery techniques. While anhydrite dissolution is the key interaction mechanism in anhydrite-rich rocks, its presence may also lead to complex rock wetting behavior. The underpinning logic is that pure anhydrite is strongly water-wet, while pure calcite and dolomite are somewhat intermediate to weakly oil-wet, thus the question remains unclear as to what the wettability would be of anhydrite and calcite, and anhydrite and dolomite combinations. Moreover, because anhydrite is negatively charged while dolomite and calcite in formation water (FW) are positively charged, depending on the mixture composition, pH, and brine type, it is not clear what the charge would be of a combination of anhydrite-calcite or anhydrite-dolomite, and, consequently, what the wetting behavior of calcite and dolomite would be due to anhydrite presence. Therefore, this research explores the effect of anhydrite mineral on carbonate wetting characteristics. The effect of mineralogical heterogeneity, specifically the presence of anhydrite minerals in calcite and dolomite wettability, is investigated across a range of scales. The results show that anhydrite dissolution occurs in deionized (DI) water, seawater (SW), and FW as evident from the general increase in sulfate ions concentration with increased anhydrite content in the anhydrite-carbonate system. We also found that zeta potential demonstrates an unstable colloidal system, which is indicated by near-zero and low zeta potential values (less than ±10) of the anhydrite-carbonate-brine systems. It also shows a nonmonotonic wetting behavior with brine salinity and pH variations. Accordingly, the zeta potential is not a general and valid candidate to justify the wettability behavior of heterogeneous carbonates. However, based on flotation and contact angle techniques of wettability estimation, anhydrite presence has the tendency to alter the wetting state of anhydrite-carbonate-brine-oil systems to more water-wet. Thus, findings from this research will provide answers to the question of how the mineralogy affects the wetting characteristics of carbonates. What will be the changes in carbonate wetting behavior with mineralogical heterogeneity? Specifically, what would be the wettability of calcite-anhydrite and dolomite-anhydrite combinations? This research therefore provides a systematic investigation of rock/fluid interactions and their implications on wettability and ultimate recovery of oil at different range scales. The findings from this study will significantly enhance our knowledge of fluid-rock interactions, in particular, anhydrite-rich carbonate wetting behavior, thereby reducing the uncertainties associated with laboratory-scale predictions and oil recovery planning.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference69 articles.

1. Specificity and Synergy at the Oil–Brine Interface: New Insights from Experiments and Molecular Dynamics Simulations;Abdel-Azeim;Energy Fuels,2021

2. Impact of Acid and Base Numbers and Their Ratios on Wettability Alteration of the Calcite Surface;Al-Balushi;Energy Fuels,2020

3. In Situ Characterization of Mixed-Wettability in a Reservoir Rock at Subsurface Conditions;Alhammadi;Sci Rep,2017

4. Electrokinetics of Limestone and Dolomite Rock Particles;Alotaibi;SPE Res Eval & Eng,2011

5. Efficiency and Recovery Mechanisms of Low Salinity Water Flooding in Sandstone and Carbonate Reservoirs;AlQuraishi,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3