Electrokinetics of Limestone and Dolomite Rock Particles

Author:

Alotaibi Mohammed B.1,Nasr-El-Din Hisham A.1,Fletcher James J.1

Affiliation:

1. Texas A&M University

Abstract

Summary High-salinity water such as seawater, or formation brines, is frequently injected in carbonate reservoirs. Ion interactions between injection water, reservoir fluids, and rock surface are quite complex. It has recently come to be believed that the chemistry of injection water can significantly enhance oil recovery. Several reaction mechanisms were suggested, including rock dissolution, change of surface charge, and/or sulfate precipitation. This study attempts to characterize the electrokinetics of limestone and dolomite suspensions at 25 and 50°C. In addition, reaction mechanisms at the water/rock interface were established. Synthetic formation brine, seawater, and aquifer water were chosen from Middle East reservoirs. Carbonate particles were soaked in high- and low-salinity water. A phase-analysis-light-scattering (PALS) technique was used to determine the zeta potential (surface charge) of carbonate particles over a wide range of pH, ionic strength, and temperature. Zeta potential of limestone particles was significantly affected by calcium ion. Low-salinity water created more negative charges on limestone and dolomite particles by expanding the thickness of the diffuse double layer. Individual divalent cations decreased the zeta potential of limestone particles in sodium chloride solutions, while sulfate ions showed a negligible effect. Limestone particles in high-salinity water had decreased zeta potential. The solubility of calcium ions increased as temperature was increased and thus created additional negative charges. The absence of sulfate in aquifer water strongly influenced the dolomite surface charge. In summary, surface-charge adjustment from positive to negative can alter the wettability of carbonate rock from preferentially oil-wet to water-wet. As a result, residual-oil saturation should be decreased.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3