Upstream Offshore-Facility Weight-Growth Study

Author:

Rui Ray (Zhenhua)1,Walker Jason1

Affiliation:

1. Independent Project Analysis

Abstract

Offshore-facility weight is significantly related to the cost, schedule, and complexity of offshore-facility projects. Therefore, controlling the weight growth of offshore facilities is important to project success. This paper seeks to understand weight growth and its causes among different project phases. By use of the detailed database of oil and gas projects provided by Independent Project Analysis, we conducted a rigorous statistical analysis of offshore weight growth to identify the root cause(s). This paper evaluates the weight growth for 153 global offshore projects at the end of the concept selection and authorization gates. The study results show that industry weight growth is much higher than expected. Front-end loading (FEL) is a core work process of project teams before authorization. FEL is a process to develop sufficient strategic information to address risk and make decisions to commit resources to maximize the chance of a successful project. The FEL work process is divided typically into phases or stages, with a pause for assessment and decision making about whether to process. Although the industry typically allocates 13% of dry weight for weight contingency at the end of FEL 2 and 6% of dry weight at authorization to account for unexpected weight growth, one-half of the topsides had more than 10% weight growth from authorization to completion, and more than one in three substructures had more than 10% weight growth from authorization to completion. The data also show that estimated weight-contingency range is much narrower than that of actual required contingency. This analysis shows that the weight growth of most offshore facilities is caused by poor engineering status for the facilities at authorization. The analysis also shows that setting aggressive schedule targets erodes the benefits of good engineering definition. In general, projects with good engineering and aggressive schedule targets have an additional 9% weight growth compared with projects with good engineering and nonaggressive schedule targets. The weight growth of offshore facilities was found across many different offshore-facility concepts (e.g., fixed platforms, spars, tension-leg platforms). This research provides an understanding of industry offshore-facilities weight performance and the main causes of weight growth, and offers recommendations for improving weight predictability.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradient-based optimisation of rectangular honeycomb core sandwich panels;Structural and Multidisciplinary Optimization;2022-08-17

2. Weight-Estimation Method of FPSO Topsides Considering the Work Breakdown Structure;Journal of Offshore Mechanics and Arctic Engineering;2017-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3