Performance Analysis of a Major Steam Drive Project in the Tia Juana Field, Western Venezuela

Author:

De Haan H.J.1,Schenk L.2

Affiliation:

1. Compania Shell de Venezuela, Ltd.

2. Bataafse Internationals Petroleum Maatschappij

Abstract

A steam drive test was conducted in a heavy oil reservoir (12 to 14 deg. API) comprising 7 twin injection and 24 production wells. Project performance, analyzed by means of heat and material balances, indicates that considerable increase in recovery efficiency has already been obtained. Introduction Scope for Thermal Recovery in Shell's Heavy OH Fields in Venezuela The main heavy oil reservoirs on the East coast of Lake Maracaibo (Fig. 1), known as "Bolivar Coast", initially contained some 20 billion bbl of oil in place with gravities in the range of 10 to 15 deg. API. The current total production rate is about 400,000 B/D. Since the recovery to date is on an average only 12.5 percent of the initial oil in place, these fields offer a vast potential for secondary recovery methods. The reservoirs are characterized by moderate depth (generally 1,000 to 3,000 ft; maximum 5,000 ft), good formation properties such as net oil sand thickness (50 to 300 ft), high porosity (30 to 40 percent) permeability (1 to 3 darcies) and oil saturation (initially about 80 percent) and high oil viscosity (100 to 10,000 cp in situ), all of which are favorable for the application of thermal recovery processes. Since 1957, steam drive, steam "soak" and underground combustion have been tested or are being tested in this area. This paper deals with a major steam drive test in the Tia Juana field. The test was commenced in Sept., 1961, on the basis of encouraging results of laboratory experiments and pilot field tests, which will be discussed briefly. Early Laboratory Investigation of the Steam Drive Process In 1956 a series of model experiments was carried out in the Koninklijke/Shell Laboratorium, Amsterdam, to investigate the displacement of heavy oil by steam. The prototype studied was a horizontal, unconsolidated heavy oil reservoir, subjected to a linear steam drive. The model, representing a slab from this reservoir along the main flow direction, consisted of a steel tube filed with oil-saturated sand, provided with layers of rock at the top and bottom to simulate conductive heat losses to cap and base rock. Lateral heat losses, perpendicular to the main flow direction, were minimized by insulating the sides of the model. Heat flow and viscosity and gravity forces were scaled by taking the steam injection rate and sand permeability inversely proportional to the geometric reduction factor of the model, and using materials (oil, steam, cap rock, etc.) identical with those of the prototype. The main feature of the process was a frontal displacement mechanism that occurs within wide ranges of injection pressure and rate, oil viscosity, initial oil saturation and sand permeability. The high stability of this front can be attributed to the high stability steam flow rates, combined with the reduction in oil viscosity. High recoveries were obtained due to the low residual oil saturation of about 15 percent in the zone swept by steam. The latter value pertains to the specific test conditions (heavy oil, unconsolidated sand) and may be lower for light oil, due to the effects of steam distillation. JPT P. 111ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3