What is Next for SAGD?: Evaluation of Low GHG and High-Efficiency Tertiary Recovery Options

Author:

Pratama Randy Agra1,Babadagli Tayfun1

Affiliation:

1. University of Alberta

Abstract

Abstract Steam injection has been widely applied in different forms to recover heavy-oil and bitumen for decades. Even though this method is a proven and effective technology, the steam generation process itself may lead to environmental issues and low economic viability. Also, many worldwide steam projects, including SAGD projects in Canada, have already reached their maturity with a severe decline in production despite continuous steam injection. Escalating greenhouse gas (GHG) emissions is another crucial downside of steam injection application, contributing to an emission growth rate of about 1.1% worldwide and 0.8% annually in Canada. This requires us to search for different techniques to deplete the remaining (conditioned) oil efficiently and in an eco-friendly manner. This paper focuses on the testing of a new technique to minimize GHG emissions resulting from steam generation while enhancing the ultimate recovery post-SAGD. ~50,000 cP heavy crude and processed oil (for visual models) samples were used as an oleic phase in this experimental research. Condensable gases as single and multiple (mixed with methane) components were included as potential solvents to be applied to the already steamed models. Visual Hele-Shaw and glass-bead-pack models were employed to investigate the displacement mechanism, displacement efficiency, and phase distribution in porous media. All experiments were performed at currently existing temperatures in matured SAGD reservoirs to further evaluate the sensitivity of phase behavior of condensable solvents in a heavy-oil/steam system, as well as existing condensed water of which is not compatible with hydrocarbon solvents. We observed that condensable solvents could improve the displacement efficiency/incremental heavy-oil recovery over 30% by mobilizing residual oil and providing favorable conformance to the steam chamber. More importantly, the steam usage was able to be entirely cut off, and the energy efficiency could be ramped up to almost 100%. Additionally, the type (and composition) for applying condensable solvents were determined at a given post-SAGD temperature. Also, the retrieval potential of the condensable solvent with oil was investigated for an efficient process. Condensable gases with different compositions were introduced as potential solvents to recuperate heavy-oil and bitumen recovery and reduce or even completely cut off the steam injection at late-stage SAGD, diminishing its GHG emission and improving energy efficiency. Valuable findings present beneficial recommendations for low-emission and high-efficiency late-stage heavy-oil recovery as post-SAGD applications, as well as other types of steam injection processes.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3