Detecting Phase-Inversion Region of Surfactant-Stabilized Oil/Water Emulsions Using Differential Dielectric Sensors

Author:

Suminar Kurniawan S.1,Gavrielatos I.1,Dabirian R.1,Mohan R. S.1,Shoham O.1

Affiliation:

1. University of Tulsa

Abstract

Summary An experimental and theoretical investigation of surfactant-stabilized oil/water emulsion characteristics was carried out under water sweep (WS) and oil sweep (OS) conditions. Both hydrophilic and hydrophobic surfactants were used, with concentrations less than and more than the critical micelle concentration (CMC). Experimental data were acquired for detection of the phase-inversion region, which was measured simultaneously by several independent methods. These include a circular differential dielectric sensor (C-DDS), a rectangular differential dielectric sensor (R-DDS) (both sensors accurately detect the phase-inversion region), a pressure transducer, and a mass flowmeter. The addition of an emulsifier surfactant to an oil/water mixture generated a stable emulsion, which resulted in a phase-inversion delay. For water-continuous to oil-continuous flow, a hydrophilic surfactant was a better emulsifier, while for oil-continuous to water-continuous flow, a hydrophobic surfactant was a better emulsifier for creating more stable emulsions. The surfactant/oil/water emulsion resulted in an increase of the dispersed-phase volume fraction required for phase inversion, as compared to the case of oil/water dispersions without surfactant. For emulsions with surfactant concentrations above CMC, the presence of micelles contributed to further delay of the phase inversion, as compared to those with surfactant concentrations below CMC. The phase-inversion region exhibits a hysteresis between the OS and WS runs, below CMC and above CMC, which was due to the difference in droplet sizes caused by different breakup and coalescence processes for oil-continuous and water-continuous flow. This research shows that the DDS is an efficient instrumentation that can be used to detect the region where the emulsion phase inversion is expected to occur. Moreover, the experimental results and the pertinent analysis and discussion provide useful insights for a more informed design of surface facilities (including emulsion separators) in oil and gas production operations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separation of Oil and Water Emulsions: Is Heating Good Enough?;Day 3 Wed, October 05, 2022;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3