Separation of Oil and Water Emulsions: Is Heating Good Enough?

Author:

Gavrielatos Ilias1,Mohan Ram S.1,Shoham Ovadia1

Affiliation:

1. The University of Tulsa

Abstract

Abstract Surfactants and nanoparticles (NP) frequently act as stabilizers for oil and water emulsions. There is a need to investigate whether such NP stabilized emulsions (also known as Pickering emulsions) require different treatment for break-up, as compared to the well-known method to separate surfactant stabilized emulsions, i.e., heating. Thus, the main objectives of this work were to identify emulsions resistant to heating and develop a process able to accelerate the separation kinetics of such ultra-tight emulsions. Extensive experimental investigations on the stability of different types of oil and water emulsions under various temperature and brine salinity conditions were carried out using a state-of-the-art Portable Dispersion Characterization Rig (P-DCR). The batch separator was equipped with a high-resolution, surveillance camera to monitor emulsion separation kinetics. Commercial grade mineral oil and synthesized brines with various salinities were used as the test fluids. Silica nanoparticles of different wettability and surfactants with different HLB values were deployed as the stabilizing agents for the produced emulsions. It was found that the elevated temperature effects dominate the separation kinetics of the studied emulsions, as compared to any brine salinity effects, especially at higher temperatures, namely, 60°C and 80°C. Moreover, the effects of high temperatures and brine salinities on the separation kinetics were much more significant for the emulsions stabilized by surfactants than for NP stabilized emulsions. Perhaps more importantly, neither high temperature nor high brine salinity had any remarkable effects on the separation kinetics of the emulsions stabilized by hydrophobic NP. It was also shown that the hydrophobic NP dominate the stability mechanism for dual emulsifier fluid systems, such as emulsions stabilized by both hydrophobic NP (R974) and a surfactant of low HLB value (Span 80). A novel oil-water emulsion break-up process was developed to enhance the kinetics of the separation, irrespective of the underlying emulsion stability mechanisms, namely, surfactant, NP or both. The performance of this separation process was superior to heating, which is the conventional method applied to separate oil-field emulsions. Finally, it is envisioned that the newly developed process may be applied in the field as an in-line separation system for tight oil-field emulsions.

Publisher

SPE

Reference27 articles.

1. Alabdulmohsen Z. 2015. Experimental study of crude oil emulsion stability by surfactants and nanoparticles. Master's Thesis.

2. Angardi V. 2016. Effect of aqueous phase composition and surfactant on oil-water dispersion stability. MS Thesis, The University of Tulsa.

3. Emulsions stabilized solely by colloidal particles;Aveyard;Advances in Colloid and Interface Science 100-102,2003

4. Aqueous foams stabilized solely by silica nanoparticles;Binks;Angew. Chem. Int. Ed.,2005

5. Interfacial stucture of solid-stabilized emulsions studied by scanning electron microscopy;Binks;Phys. Chem. Chem. Phys.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3