A Case-Study for the Reduction of CO2 Emissions in an Offshore Platform by the Exploitation of Renewable Energy Sources Through Innovative Technologies Coupled with Energy Storage

Author:

Joseph Epoupa Mengou1,Chiara Gambaro1,Andrea Alessi1,Andrea Terenzi1,Michela Vecchione2,Marco Binaschi2,Salvatore R Di Salvo2,Anglani Norma2

Affiliation:

1. Eni spa

2. UNIPV

Abstract

Abstract Energy storage is entering in the energy distribution supply chain due to the global goal of achieving carbon neutrality in human activities, especially those related to energy production. Renewable energies integrated with energy storage play an important role in this framework [1]. The purpose of the study is to evaluate through simulations the impact of new renewable energy technologies in a microgrid to minimize fossil fuels consumption. The case study considers a hybrid microgrid including: a gas microturbine, organic photovoltaic panels (OPV), a point absorber wave energy converter, a vanadium redox flow battery and a load. The microgrid is placed in an offshore hydrocarbon plant near the northern coast of Australia. Firstly, Australian meteorological data have been studied and three seasons identified (named ST1, ST2 and ST3). Then a correlation has been established between meteorological data and OPVs performances, analyzing data collected on OPVs panels installed. This relationship has been used to assess OPVs potential production at the site of interest. Similar correlation was made between the performances of a wave energy converter placed in the Adriatic Sea and the wave power matrix, to determine a suitable power data reference for the potential production of a wave energy converter to the Australian coast. Finally, the behavior of the microgrid was modeled. Different scenarios have been considered and the best one with optimal meteorological conditions enables lead to drastically decrease of the use of gas micro turbine resulting in lowest CO2 emissions. In fact, the consumption of natural gas has been summarized as follow: Season 1 (ST1): during this season the load is entirely fed by the renewable sources and by the battery, with consequent zeroing of the daily consumption of natural gas. Season 2(ST2): the battery is charged from 09:00am to 07:00pm with the exceeding power from the renewable sources. This configuration involves a daily natural gas consumption of 10.73 Sm3/d, which is equivalent to 987.16 Sm3/ ST2 (accounting for 92 days). Season 3(ST3): the battery is charged from 09:00am to 07:00pm with the exceeding power from the renewable sources. This configuration involves a daily natural gas consumption of 6.58 Sm3/d, which is equivalent to 1006.74 Sm3/ ST3 (accounting for 120 days). The avoided CO2 emissions are 2062 tons/year. This case study showed how the new renewable technologies, such as organic photovoltaics and wave energy converter, coupled with a long duration storage system, can be conveniently applied in sites with limited space for the decarbonization purpose of an offshore platform.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3