Asphaltene Inhibitor Screening of Next Generation: Automated High Throughput Experimentation Method

Author:

Punase Abhishek1,Burnett Will1,Addis Kyle1,Robertson Adam1,Wylde Jonathan1

Affiliation:

1. Clariant Oil Services

Abstract

Abstract Asphaltene deposition has been a critical flow assurance challenge and chemical treatment with continuous asphaltene inhibitors injection has been the go-to approach for operators to preemptively tackle this challenge. Development of the right inhibitor chemistry and dosage is challenging and critical. A smart, automated process for screening numerous asphaltene inhibitor formulations based on Design of Experiment and High Throughput Experimentation method has been developed and is discussed in this work. Asphaltene inhibitor formulations with distinct base chemistries, boosters, and solvent packages were blended in various ratios to encompass a large chemical and formulation space with the automated blending station of the High Throughput Experimentation (HTE) setup. These formulations were then dosed into a multitude of crude oil samples produced from different regions of the world at constant dosage to represent a uniform and comparable test fluid matrix. Dispersion state of asphaltene clusters within dosed oil samples, in their native state, were then evaluated using the HTE-ADAPT techniques to generate thousands of performance data points. Furthermore, the efficiency of top performing formulations was then cross validated using standard optical transmittance and deposition-based techniques to gauge performance. Four main pillars of the HTE technique are automation, miniaturization, parallelization, and computational design. Each of these pillars contribute towards enhancing the current test method into a more accurate, agile, and quicker technique. Through automation, the overall accuracy of formulations blending as well as performance efficiency measurement is increased. With miniaturization, the resource consumption of raw materials and more importantly crude oil is considerably reduced. For this work, each formulation required less than 300 ^l of oil per measurement. Parallelization resulted in completing the test evaluation at a rate of 600 evaluations every 4 hours. These results can then be analyzed through the computational design and analytics software to identify the top performing formulations along with predicting the optimum chemical formulation space which can lead to maximum performance efficiency. The selected formulations were subsequently blended in bigger laboratory scale and their efficacy was cross-checked with both dispersion (optical transmittance and thermoelectric methods) and deposition (flow loop setup) based techniques against a benchmark asphaltene inhibitor product, known to work successfully in many fields having asphaltene instability related issues. Through this process, several new asphaltene inhibitor formulations were discovered that outperformed the benchmark blend. Automated HTE technology provides a new dimension to asphaltene inhibitor development work that can carry out performance evaluation of numerous formulations at tremendous speed and minimum crude oil volume. With this technique, one can quickly adapt to the changing requirements of asphaltene inhibitor and its dosage with varying crude oil composition, gas-to-oil ratio, water cut, or any operational change affecting overall asphaltene stability.

Publisher

SPE

Reference18 articles.

1. DoE Simplified: Practical Tools for Effective Experimentation;Anderson,2000

2. Becker H. L. Jr , 2000. Asphaltene: To Treat or Not. Presented at SPE Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers.

3. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems);Detloff;Powder Technology,2007

4. Determination of Asphaltene Inhibitor Properties and Treatment of Crude Oil with Asphaltene Inhibitors;Hart,2022

5. Method and System for Stability Determination Asphaltenes Utilizing Dielectric Constant Measurements;Hascakir,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3