Can You Feel the Strain? DAS Strain Fronts for Fracture Geometry in the BC Montney, Groundbirch

Author:

Ugueto Gustavo A.1,Todea Felix2,Daredia Talib2,Wojtaszek Magdalena3,Huckabee Paul T.1,Reynolds Alan1,Laing Carson4,Chavarria J. Andres4

Affiliation:

1. Shell Exploration and Production

2. Shell Canada Limited

3. Shell Global Solutions International

4. OptaSense

Abstract

Abstract The use of Distributed Acoustic Sensing for Strain Fronts (DAS-SF) is gaining popularity as one of the tools to help characterize the geometries of hydraulic fracs and to assess the far-field efficiencies of stimulation operations in Unconventional Reservoirs. These strain fronts are caused by deformation of the rock during hydraulic fracture stimulation (HFS) which produces a characteristic strain signature measurable by interrogating a glass fiber in wells instrumented with a fiber optic (FO) cable cemented behind casing. This DAS application was first developed by Shell and OptaSense from datasets acquired in the Groundbirch Montney in Canada. In this paper we show examples of DAS-SF in wells stimulated for a variety of completion systems: plug-and-perforating (PnP), open hole packer sleeves (OHPS), as well as, data from a well completed via both ball-activated cemented single point entry sleeves (Ba-cSPES) and coil-tubing activated cemented single point entry sleeves (CTa-cSPES). By measuring the strain fronts during stimulation from nearby offset wells, it was observed that most stimulated stages produced far-field strain gradient responses in the monitor well. When mapped in space, the strain responses were found to agree with and confirm the dominant planar fracture geometry proposed for the Montney, with hydraulic fractures propagating in a direction perpendicular to the minimum stress. However; several unexpected and inconsistent off-azimuth events were also observed during the offset well stimulations in which the strain fronts were detected at locations already stimulated by previous stages. Through further integration and the analysis of multiple data sources, it was discovered that these strain events corresponded with stage isolation defects in the stimulated well, leading to "re-stimulation" of prior fracs and inefficient resource development. The strain front monitoring in the Montney has provided greater confidence in the planar fracture geometry hypothesis for this formation. The high resolution frac geometry information provided by DAS-SF away from the wellbore in the far-field has also enabled us to improve stage offsetting and well azimuth strategies. In addition, identifying the re-stimulation and loss of resource access that occurs with poor stage isolation also shows opportunities for improvement in future completion programs. This in turn, should allow us to optimize operational decisions to more effectively access the intended resource volumes. These datasets show how monitoring high-resolution deformation via FO combined with the integration of other data can provide high confidence insights about stimulation efficiency, frac geometry and well construction defects not available via other means.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3