Affiliation:
1. Joint Operations
2. KGOC - Wafra Joint Operations
3. Chevron Corp.
Abstract
Abstract
A limitation of Electrical Submersible Pumps (ESPs) is the inability to handle significant volumes of gas. The implications of this limitation become even more critical if the fluid production rate is at or below the minimum rate required for cooling of downhole equipment. The oldest and most widely practiced method for forced convection cooling of the motor of an ESP system is to use a motor shroud. However, numerous field case studies have shown that even with the motor shroud in place, motor failure has been the primary cause of ESP failure in low-volume high-GOR wells.
The optimal mitigation solution for low-volume high GOR cased-hole producers is to lower the ESP string below the perforations, with a shroud installed for cooling of the motor. For low-volume high-GOR ESP-equipped producers that are producing from an open-hole interval installation of the same conventional shrouding system would take care of the cooling of the motor but it will not function as a free gas eliminating or reducing device. The production strings of the ESPs producing from an open-hole interval usually include an inverted shroud intended to reduce the amount of free gas entering the pump. Such installations would not function as a motor cooling device.
The large degree of production loss and the increased operating cost incurred by unplanned ESP shut-down and failure have been two of the major challenges faced by the asset teams of South Fuwaris (SF) and Humma (HUM) Fields in PNZ-Kuwait, in their efforts to maximize the uptime of low-volume high-GOR ESP-equipped open-hole producers. A customized shrouding system was needed to simultaneously resolve the issues of motor cooling and the reduction of the amount of free gas entering the pump. The dual functioning nature of a shrouding system composed of a conventional shroud combined with an inverted shroud was the main feature that had to be incorporated in the design of such system.
Through the continuous efforts of the South Fuwaris and Humma asset teams, a novel dual-shrouding system has recently been developed to fulfill the requirements of cooling of the motor and reduction of free gas entering the pump simultaneously. Multiple customized versions of this system have been installed in critical low-volume high-GOR open-hole producers since the 4th quarter of 2009.
Examination of historical operating conditions of ESP strings equipped with the new shrouding system showed a significant reduction in the number of ESP shut-downs due to underload, overload or high motor temperature trips, and a dramatic drop in the number of ESP failures caused by overheating of the motor.
This paper discusses the benefits of the newly-designed shrouding system and its built-in perforated tail pipe, specifically designed for low-volume high-GOR producers in South Fuwaris and Humma Fields, and actual results achieved from field implementation of this system.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献