Model for Asymmetric Hydraulic Fractures with Nonuniform-Stress Distribution

Author:

Hu Xiaofan1,Liu Guoqing1,Luo Guofan1,Ehlig-Economides Christine1

Affiliation:

1. University of Houston

Abstract

Summary Engineers commonly expect symmetric fracture wings in multiple-transverse-fracture horizontal wells. Microseismic surveys have shown that asymmetric hydraulic fractures grow away from the recent fractured wells and grow toward previously produced wells. This might be caused by the elevated stress around the recently fractured well and the reduced stress near the depleted wells. This paper presents the asymmetric fracture growth observed by the microseismic events, develops a simple model to simulate the fracture propagation, and discusses its effect on the well productivity. Motivated by the microseismic observations, we developed a simple 2D fracture model to simulate asymmetric fracture wings that can capture the behavior of fracture hits between two adjacent horizontal fractured wells. Fluid leakoff during fracture propagation is considered in the model. The effect of asymmetric fractures on production is evaluated with numerical simulations. The newly developed fracture model shows that the fracture can grow asymmetrically if the horizontal well is near where the stress field is different between its two sides. Numerical simulation is used to quantify the productivity reduction caused by asymmetric hydraulic fractures. Our results provide a reason for why asymmetric fractures occur and demonstrate that they do penalize well performance. Our model suggests the importance of fracturing under a balanced-stress distribution that benefits long-term production. Use of this model also suggested that an optimized hydraulic-fracturing-treatment design will improve the overall performance of multiple parallel wells, which minimizes or avoids asymmetric fracture wings. The fracture-propagation model and productivity model provide simple but profound guidelines for well-pad management, including well spacing, stage planning and spacing, and completion and production order.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3