Affiliation:
1. Louisiana State University
Abstract
Summary
A thorough understanding of foam fundamentals is crucial to the optimal design of foams for improved oil recovery (IOR) or enhanced oil recovery (EOR). This study, for the first time, presents anomalous foam-fractional-flow solutions that deviate significantly from the conventional solutions at high-injection foam qualities by comparing method-of-characteristics and mechanistic bubble-population-balance simulations.
The results from modeling and simulations derived from coreflood experiments revealed the following: The fraction of grinding energy contributed by the flowing gas (fg)There are three regions—Region A with relatively wet (or high fw) injection conditions in which the solutions are consistent with the conventional fractional-flow theory; Region C with very dry (or low fw) injection conditions in which the solutions deviate significantly; and Region B in between, which has a negative dfw/dSw slope showing physically unstable solutions.For dry-injection conditions in Region C, the solutions require a constant state (IJ) between initial (I) and injection (J) conditions, forcing a shock from I to IJ by intersecting fractional-flow curves, followed by spreading waves or another shock to reach from IJ to J.The location of IJ in fw vs. Sw domain moves to the left (or toward lower Sw) as the total injection velocity increases for both weak and strong foams until it reaches limiting water saturation.
Even though foams at high-injection quality are popular for mobility control associating a minimum amount of surfactant solutions, foam behaviors at dry conditions have not been thoroughly investigated and understood. The outcome of this study is believed to be helpful to the successful planning of foam IOR/EOR field applications.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献