Anomalous Foam-Fractional-Flow Solutions at High-Injection Foam Quality

Author:

Roostapour A..1,Kam S.I.. I.1

Affiliation:

1. Louisiana State University

Abstract

Summary A thorough understanding of foam fundamentals is crucial to the optimal design of foams for improved oil recovery (IOR) or enhanced oil recovery (EOR). This study, for the first time, presents anomalous foam-fractional-flow solutions that deviate significantly from the conventional solutions at high-injection foam qualities by comparing method-of-characteristics and mechanistic bubble-population-balance simulations. The results from modeling and simulations derived from coreflood experiments revealed the following: The fraction of grinding energy contributed by the flowing gas (fg)There are three regions—Region A with relatively wet (or high fw) injection conditions in which the solutions are consistent with the conventional fractional-flow theory; Region C with very dry (or low fw) injection conditions in which the solutions deviate significantly; and Region B in between, which has a negative dfw/dSw slope showing physically unstable solutions.For dry-injection conditions in Region C, the solutions require a constant state (IJ) between initial (I) and injection (J) conditions, forcing a shock from I to IJ by intersecting fractional-flow curves, followed by spreading waves or another shock to reach from IJ to J.The location of IJ in fw vs. Sw domain moves to the left (or toward lower Sw) as the total injection velocity increases for both weak and strong foams until it reaches limiting water saturation. Even though foams at high-injection quality are popular for mobility control associating a minimum amount of surfactant solutions, foam behaviors at dry conditions have not been thoroughly investigated and understood. The outcome of this study is believed to be helpful to the successful planning of foam IOR/EOR field applications.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational study on the three phase displacement characteristics of foam fluids in porous media;Journal of Petroleum Science and Engineering;2022-08

2. Enhanced oil recovery;Petroleum Engineer's Guide to Oil Field Chemicals and Fluids;2021

3. Experimental investigation and modelling of CO 2 ‐foam flow in heavy oil systems;The Canadian Journal of Chemical Engineering;2019-08-22

4. Foam flow in porous media: Concepts, models and challenges;Journal of Natural Gas Science and Engineering;2018-05

5. Dimensionality-Dependent Foam Rheological Properties: How To Go From Linear to Radial Geometry for Foam Modeling and Simulation;SPE Journal;2016-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3