Affiliation:
1. Louisiana State University
Abstract
Summary
Numerous laboratory and field tests reveal that foam can effectively control gas mobility and improve sweep efficiency, if correctly designed. It is believed that there is a significant gap between small laboratory-scale experiments and large field-scale tests because of two main reasons: (1) Typical laboratory flow tests are conducted in linear systems, whereas field-scale foam enhanced-oil-recovery (EOR) processes are performed in radial (or spherical partly) systems and (2) through the complicated in-situ lamella creation/coalescence mechanisms and non-Newtonian behavior, foam rheology depends on the geometry and dimensionality. As a result, it is still an open question as to how to translate laboratory-measured data to field-scale treatments.
Motivated by earlier studies of Kovscek et al. (1994, 1997), this study investigates how such dimensionality-dependent foam rheological properties are affected by different injection conditions on small and large scales, with a mechanistic foam-modeling technique. Complex foam-flow characteristics such as three foam states (weak-foam, strong-foam, and intermediate states) and two steady-state strong-foam regimes (high-quality regime and low-quality regime) lie in the heart of this analysis.
The calculation results from small radial and spherical systems showed that (1) for strong foams in the low-quality regime injected, foam mobility decreased [or mobility reduction factor (MRF) increased] significantly with distance showing a good sweep efficiency; (2) for strong foams in the high-quality regime, the situation became more complicated—near the well, foam mobility decreased, but away from the well, foam mobility increased with distance, which eventually gave a relatively low sweep efficiency; and (3) for weak foams injected, foam mobility increased with distance showing a poor sweep efficiency. The results implied that the use of a fixed value of MRF, which is a common practice in field-scale reservoir simulations, might lead to a significant error. When the method was applied to a larger scale, it was shown that strong foams could propagate deeper into the reservoir at higher injection rate, higher injection pressure, and at lower injection foam quality. Foam-propagation distance was very sensitive to these injection conditions for strong foams in the high-quality regime, but much less sensitive for strong foams in the low-quality regime.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献