A Systematic Study of Gas and Water Coning By Potentiometric Models

Author:

Chierici Gian Luigi1,Ciucci Giuseppe M.1,Pizzi Giuseppe1

Affiliation:

1. Agip-Direzione Mineraria

Abstract

Abstract Starting from Muskat's theory of water and gas coning, maximum permissible oil production rates without water and/or free-gas production have been determined, in a broad range of reservoir and well parameters, using the potentiometric model technique. The main assumptions made are as follows:the reservoir rock is homogeneous (either isotropic or anisotropic);the volume of the aquifer underlying the oil zone is very small, so that it does not contribute to reservoir energy; andthe gas cap expands at a very low rate, so that it can be assumed to be in quasi-static conditions. The results obtained are presented in the form of diagrams which can be used for solving two types of problems:given the reservoir and fluids characteristics, as well as the position and length of the perforated interval, determine the maximum oil production rate without water and/or free-gas production; andgiven the reservoir and fluids characteristics only, determine the position and length of the perforated interval which optimize the maximum permissible oil production rate, without water and/or free-gas production. Introduction In oil reservoirs where the oil-bearing formation is underlain by an aquifer which does not participate in the production mechanism, water-coning is a limiting factor to the flow rates of producing wells. Production rates are usually kept to a value that will prevent the water from entering the wells. The entry of water into a well lowers its productivity by increasing the weight of the fluid column; moreover, the separation of water from the effluent, at the surface, may constitute a very difficult problem in cases of heavy viscous oils. A similar situation is encountered in oil reservoirs with a gas cap overlying the oil-saturated zone; here a downward gas cone is induced by the flow of oil towards the producing wells. Production rates must be low enough to prevent the gas from being produced; producing gas from the gas cap would be a waste of energy. Of course, water-coning and gas-coning phenomena can occur at the same time in the same reservoir if the oil-producing formation is both overlain by a gas zone and underlain by a water zone. Due to its relevant practical importance, the mechanism of coning was studied by many people. Defining the conditions for getting the maximum water-free and/or gas-free oil production rate is a difficult problem, often encountered under one of the following aspects:1. Predict the maximum flow rate that can be assignedto a completed well without the simultaneousproduction of water and/or free-gas.2. Define the optimum length and position of the intervalto be perforated in a well, in order to obtain themaximum water and gas-free production rate. A systematic study of these problems was made by means of the electrical analog technique. The results of this study are presented here, under the form of a set of curves providing solutions for the above stated problems. These curves are valid only for homogeneous formations, either isotropic or anisotropic. Should the formation be non-homogeneous (by horizontal or vertical variation of permeability, shale diaphragms, fractures, etc.), a specific potentiometric study would be required for each specific case. Especially when shale diaphragms of some radial extension are present, the critical rates observed are much larger than would be expected from the diagrams. STATEMENT OF THE PROBLEM In the present study the aquifer is supposed to be of such limited volume that it does not contribute to the energy of the reservoir. Moreover, the gas cap is supposed to expand at such a low rate that the potential gradient in the gas cap is negligible. Under static conditions water-oil and gas-oil interfaces ( and ) are both horizontal. When the reservoir production starts, below each well these interfaces take a cone-like shape (Fig. 1) having as an axis the axis of the well. This shape results from the equilibrium between potential gradients in the oil zone and gravitational forces due to density differences between oil and water and between oil and gas. Assuming the oil-bearing formation to be homogeneous and the oil to be incompressible, the analysis of the problem (see Appendix) shows that the oil-water and gas-oil interfaces are stable only if the oil production rate of the well is not higher than the following values. JPT P. 923ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3