Diffusion-Based Multiphase Multicomponent Modeling of Cyclic Solvent Injection in Ultratight Reservoirs

Author:

Ma Ming1,Emami-Meybodi Hamid1

Affiliation:

1. The Pennsylvania State University, United States

Abstract

Abstract The cyclic solvent (gas) injection has been proved as an economical and effective method to enhance oil recovery in ultratight reservoirs such as shales. However, accurate modeling of cyclic solvent injection has been challenging due to the complex nature of fluid transport in these nanoporous media. Most models are developed based on Darcy's and Fick's laws, which do not capture some critical transport phenomena within nanopores at reservoir conditions. Accordingly, we develop a predictive numerical model encapsulating key transport mechanisms for cyclic solvent injection in ultratight reservoirs. The model is developed based on the binary friction concept that incorporates friction between different fluid molecules as well as fluid molecules and pore walls. The Maxwell-Stefan approach is employed to account for the friction among fluid molecules. The friction between molecules and pore walls is incorporated through partial viscosity and Knudsen diffusivity. A general driving force, chemical potential gradient, is considered for the transport of non-ideal fluid mixtures in ultratight reservoirs. The Peng-Robinson equation of state with confinement effect is used for the phase behavior calculations. The total flux consists of multicomponent molecular diffusion flux resulting from the chemical potential gradient and pressure diffusion flux driven by the pressure gradient. The governing equations for composition and pressure are solved implicitly using the finite difference method. After conducting time-step and grid-size sensitivity analysis, the developed model is validated against analytical solutions and experimental data. The primary production and solvent injection process are then simulated for a trinary oil (CH4, C4H10, and C12H26) and two solvent types (CH4 and CO2). The results show that the transport of hydrocarbon components in the vapor phase is faster than in the liquid phase due to the higher component transmissibilities in the vapor phase. Accordingly, light and heavy components are produced at different rates during primary production since the vapor phase mainly consists of lighter components. For the single-cycle solvent injection cases, CO2 and CH4 improve hydrocarbon recovery, with CO2 slightly performing better than CH4. This is attributed to CO2's ability to extract more intermediate and heavy components into the vapor phase as compared with CH4. The recovery factor of heavy components after CO2 injection (6.2%) is higher than that of CH4 injection (5.9%). For multi-cycle solvent injection cases, the incremental hydrocarbon recovery (0.7%) is slightly better for CO2 injection than CH4 injection (0.3%). Furthermore, the results reveal that CO2 cyclic injection results in producing more intermediate and heavy components from the matrix region in the vicinity of the fracture, while CH4 cyclic injection extracts more light components. The bottomhole pressure sensitivity analysis results indicate that the CH4 injection performance is better under single-phase conditions, while CO2 performance is better under two-phase conditions. Finally, the soaking-time sensitivity analysis results show that the solvent recycling rate decreases and the incremental recovery per cycle increases as the soaking time increases.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3