Effect of Reservoir Heterogeneity on Primary Recovery and CO2 Huff ‘n’ Puff Recovery in Shale-Oil Reservoirs

Author:

Chen Cheng1,Balhoff Matthew2,Mohanty Kishore K.2

Affiliation:

1. Halliburton

2. University of Texas at Austin

Abstract

Summary An equation-of-state (EOS) -based compositional reservoir simulator, UT-COMP, is used to simulate both primary recovery and carbon dioxide (CO2) huff ‘n’ puff recovery in a shale matrix typical of the Bakken formation, to investigate the effect of reservoir heterogeneity on hydrocarbon recovery. Nonaqueous components are carefully lumped into seven pseudocomponents. Permeability fields with various heterogeneity and correlation lengths are generated. UT-COMP is able to solve the compositional model, despite the permeability difference between the fracture and matrix being six orders of magnitude. The effects of both primary recovery and CO2 huff ‘n’ puff recovery depend significantly on reservoir heterogeneity. In primary recovery, the recovery factor can be fit by a two-parameter exponential formula; higher heterogeneity reduces the rate coefficient in the formula. Permeability fields with identical or similar heterogeneity have similar rate coefficients, even if the correlation lengths are different, which implies that the recovery depends primarily on heterogeneity and is insensitive to correlation length. Multiple-cycle CO2 huff ‘n’ puff processes are simulated in both homogeneous and heterogeneous reservoirs. Recovery rate in the production stage rises to a peak value much higher than that in the primary recovery, and then declines dramatically. The peak recovery rate decreases with increasing huff ‘n’ puff cycles, resulting from depleted reservoir pressure and hydrocarbons. The final recovery factor in the huff ‘n’ puff recovery is lower than that in the primary recovery, because the incremental recovery in the production stage is unable to compensate the loss in the injection and shut-in stages. Use of a longer shut-in time does not help increase the recovery rate in the production stage, because CO2 migration into the shale matrix is very limited because of the low matrix permeability. Reservoir heterogeneity leads to a faster decline of recovery rate in the production stage.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3