Macro Insights from Interval Pressure Transient Tests: Deriving Key Near-Wellbore Fracture Parameters in a Light Oil Reservoir Offshore Norway

Author:

Freites Alfredo1,Corbett Patrick1,Geiger Sebastian1,Norgard Jens-Petter2

Affiliation:

1. Heriot-Watt University

2. Lundin Norway AS

Abstract

Abstract Fractures can be first-order controls on fluid flow in hydrocarbon reservoirs. Understanding the characteristics of fractures such as their aperture, density, distribution, conductivity, connectivity, etc, is key for reservoir engineering and production analysis. Well testing plays a key role in the the characterisation of fractured reservoirs, especially. New advances in the Pressure Transient Analysis (PTA) have enabled the interpretation of production data in a way where the resulting geological scenarios are in better agreement with fracture patterns observed in outcrop analogues. Traditionally, Drill Stem Test (DST) data have been the primay source of information for well testing. However, we hypothesise that wireline conveyed tools designed for Interval Pressure Transient Testing (IPTT) could yield a more throrough description of the near-wellbore heterogeneities, including fractures. Hence, we investigate the applicability of IPTT for characterising fractured reservoirs using detailed numerical simulations models with accurate wellbore representation to generate synthetic IPTT responses that can obtained through a next-generation wireline testing tool called SATURN. We particularly focus on cases where fractures are present in the near-wellbore region but do not intersect the wellbore. The study included parameters such as fracture densities and conductivities, distance between fractures and wellbore and the vertical extension of the fractures across geological beds. The impact of the different fracture scenarios on the pressure transient tests was recorded as characteristic signatures on diagnostic plots (pressure derivative curves). We have called these curves "IPTT-Geotypes"; they can be used to assist the interpretation process of IPTT responses. To the best of our knowledge, this is the first time pressure derivative type curves for IPTT in fractured reservoirs are presented in the literature. A field example of an IPTT case was analysed using the concept of geological well testing. We integrated the information from petrophysical logs and the IPTT-Geotypes to assist the calibration of a reservoir model developed to represent the geological setting of the tested reservoir interval. The results provided a sound interpretation of the reservoir geology and quantitative estimation of the matrix and fracture parameters.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3