Modeling the Effect of Permeability Anisotropy on the Steam-Assisted Gravity Drainage (SAGD) Process

Author:

Azom Prince N.1,Srinivasan Sanjay1

Affiliation:

1. University of Texas at Austin

Abstract

Abstract The SAGD process utilizes horizontal wells hence permeability anisotropy can play a very strong role in recovery. In fact, it has been well documented that poor vertical permeability kills the SAGD process because the steam chamber will not grow properly. Several authors have attempted to model this phenomenom by using time-independent averaging (e.g. harmonic, geometric averaging etc.) methods only to discover the inadequacy of such an approach as several field implementations reveal a definite time component to this effect. Consequently most studies on the effect of anisotropy during SAGD have involved only commercial simulators. However, there exists a need to describe this phenomenon quantitatively prior to any numerical simulation and delineating conditions where it can be considered important or not. Isotropy of permeability can be geometrically represented as a sphere (or circle in 2D) where the permeability radii are the same in all directions. Anisotropy can be represented as an ellipsoid (or ellipse in 2D) with varying permeability radii in different directions and the principal axes representing principal permeability directions. In this work, we assume that the principal axes point in the vertical and horizontal directions. We will show that the SAGD process has a unique geometry that allows a meaningful mapping of the steam chamber wall to the coordinate frame of such an ellipsoid. We will then use this transformation to incorporate permeability anisotropy within the framework of Butler type models. This will be done in dimensionless space and the results obtained can be used as type curves for correcting any isotropic SAGD model for anisotropic effects. Our results show that the effect of anisotropy is time dependent (generally obeying a sigmoid function) and there exists a given time for a given set of reservoir and fluid properties, after the effect of anisotropy ceases to exist. This is remarkable because it suggests a way to improve modeling efficiency for reservoirs with strong anisotropic permeabilities. Our results also explain why most other static averaging methods fail. The analytical expression can be used as a fast SAGD predictive model suitable for history matching purposes.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3