Analysis of Vertical Permeability and Its Influence on CO2 Enhanced Oil Recovery and Storage in a Carbonate Reservoir

Author:

Ren Bo1,Jensen Jerry L.2ORCID,Lake Larry W.2,Duncan Ian J.2,Male Frank3ORCID

Affiliation:

1. The University of Texas at Austin (Corresponding author)

2. The University of Texas at Austin

3. The University of Texas at Austin (now with Shell Oil Company)

Abstract

Summary The objective of this study is to improve understanding of the geostatistics of vertical (bed-normal) permeability (kz) and its influence on reservoir performance during CO2 enhanced oil recovery (EOR) and storage. kz is scrutinized far less often than horizontal permeability (kx, ky) in most geological and reservoir modeling. However, our work indicates that it is equally important to understand kz characteristics to better evaluate their influence on CO2 EOR and storage performance prediction. We conducted this study on approximately 9,000 whole-core triaxial permeability (kx, ky, kz) measurements from 42 wells in a San Andres carbonate reservoir. We analyzed kz data, including heterogeneity, correlation, and sample sufficiency measures. We analyzed wells with the largest and smallest fractions of points with kz > kmax = max(kx, ky) to explore geological factors that coincided with large kz. We quantified these geological effects through conditional probabilities on potential permeability barriers (e.g., stylolites). Every well had at least some whole cores where kz > kmax. This is a statistically justifiable result; only where Prob(kz > kmax) is statistically different from 1/3 are core samples nonisotropic. In conventional core data interpretation, however, modelers usually assume kz is less than kmax. For the well with the smallest fraction (11%) of cores where kz >kmax, the cumulative distribution functions (CDFs) differ and coincide with the presence of stylolites. We found that kz is approximately twice as variable as kx in many wells. This makes kz more difficult to interpret because it was (and usually is) heavily undersampled. To understand the influence of kz heterogeneity on CO2 flow, we built a series of flow simulation models that captured these geostatistical characteristics of permeability, while considering kz realizations, flow regimes (e.g., buoyant flow), CO2 injection strategies, and reservoir heterogeneity. CO2 flow simulations showed that, for viscous flow, assuming variable kx similar to the reservoir along with a constant kz/kx = 0.1 yields a close (within 0.5%) cumulative oil production to the simulation case with both kx and kz as uncorrelated variables. However, for buoyant flow, oil production differs by 10% [at 2.0 hydrocarbon pore volume (HCPV) of CO2 injected] between the two cases. Such flows could occur for small CO2 injection rates and long injection times, in interwell regions, and/or with vertically permeable conduits. Our geostatistical characterization demonstrates the controls on kz in a carbonate reservoir and how to improve conventional interpretation practices. This study can help CO2 EOR and storage operators refine injection development programs, particularly for reservoirs where buoyant flow exists. More broadly, the findings potentially apply to other similar subsurface buoyancy-driven flow displacements, including hydrogen storage, geothermal production, and aquifer CO2 sequestration.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference62 articles.

1. Effects of Injection Well Operation Conditions on CO2 Storage Capacity in Deep Saline Aquifers;Abdelaal;Greenhouse Gas Sci Technol,2021

2. An Approach to Gas-Coning Correlations for a Large Grid Cell Reservoir Simulator;Addington;J Pet Technol,1981

3. The Use of a Formation Tester to Characterize Permeability and Vertical Communication across Stylolite Zones in a Carbonate Reservoir - Case Study;Al-Amrie,2012

4. Experimental Measurement of, and Controls on, Permeability and Permeability Anisotropy of Caprocks from the CO2 Storage Project at the Krechba Field, Algeria;Armitage;J Geophys Res,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3