On The Computation Of The Three-Dimensional Geometry Of Hydraulic Fractures

Author:

Clifton R.J.1,Abou-Sayed A.S.2

Affiliation:

1. Brown Univ.

2. Terra Tek Inc.

Abstract

Abstract A computational method is outlined for modelling the three-dimensional development of hydraulic fractures due to the injection of a non-Newtonian fluid at the well bore. The rock formation is modelled as an infinite, homogeneous, isotropic, elastic solid with in situ stresses that vary with depth. The three dimensional problem is made two-dimensional by assuming that the velocity profile through the thickness of the crack opening is the same as for flow between parallel plates and by reducing the elasticity problem to an integral equation that relates pressure on the crack faces to crack openings. Crack openings for a given crack geometry and pressure distribution are obtained by using properties of two-dimensional Chebyshev polynomials to properties of two-dimensional Chebyshev polynomials to facilitate inversion of the integral equation. Two-dimensional fluid flow between the crack faces is analyzed using a finite element method. Introduction Current computational procedures for predicting vertical hydraulic fractures are based on an assumed height of the fracture and on fluid flow in the horizontal direction only. These assumptions, while necessary and useful in many cases, are clearly not fully satisfactory since the height of the fracture is an important quantity that one would like to predict from the computations. Furthermore, knowledge of the two-dimensional flow should be helpful in predicting proppant transport. In addition, knowledge of the proppant transport. In addition, knowledge of the pressure-time history predicted at the well bore in a well pressure-time history predicted at the well bore in a well formulated simulation of hydraulic fracturing should allow field pressure-time records to be interpreted with greater insight and confidence. Experience with computations of one-dimensional hydraulic fractures suggests that fluid flow and elastic stiffness characteristics are of primary importance whereas fracture mechanics considerations affect only the length of a small cracked region between the fluid front and the crack tip. This situation results because the weight function that relates pressure on the crack face to the stress intensity factor at the crack tip has a square root singularity at the crack tip. Consequently, the in situ compressive stress tending to close the crack can, when not nullified by fluid pressure on the crack faces near the crack tip, offset major changes in loading at positions distant from the crack front. These observations suggest that in two-dimensional hydraulic fracturing the height-length ratio of the crack may be determined primarily by considerations of fluid flow and elastic stiffness. Thus, the analysis outlined herein gives primary attention to these aspects of hydraulic fracturing. ELASTICITY OF THE FORMATION Consider the rock formation to be an infinite, isotropic elastic body under an initial stress fieldo ij. Let this body be subjected to an additional stress field 1 ij corresponding to reducing the initial stress o zz (x,y,O) on a region B bounded by(x,y) = 0 to a pressure p(x,y). (See Figure 1.) Then, the stress field 1 ij is obtained as the solution to the problem of an infinite medium with pressurep {p(x,y) - ozz (x,y,0)} acting on the planar region B. The other boundary conditions on B are assumed to be 1 xz = 1 yz = 0, corresponding to being a surface on which o xz = o yz = 0.The pressure p(x,y) can be related to the crack opening w(x,y) by making use of the fundamental solution for the stress field due to an infinitesimal segment of a dislocation line. For this, consider a dislocation segment with Burger's vector b = bh k and~ z ~ length dx' at position (x',y') as shown in-Figure 2. The normal stress on the plane z = 0 due to the dislocation segment is (Hirth and Lothe, p. 125) (1) where (2) P. 307

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3