Advances in Hydraulic Fracture Propagation Research in Shale Reservoirs

Author:

Gong XunORCID,Ma Xinhua,Liu YuyangORCID,Li Guanfang

Abstract

The characterization of artificial fracture propagation law in the fracturing process of shale reservoirs is the basis for evaluating the fracture conductivity and a key indicator of the reservoir stimulated effect. In order to improve the fracture stimulated volume of shale reservoirs, this paper systematically discusses the current status of research on artificial fracture propagation law from the research methods and main control factors and provides an outlook on its future development direction. The analysis finds that the study of fracture propagation law by using indoor physical simulation experiments has the advantages of simple operation and intuitive image, and the introduction of auxiliary technologies such as acoustic emission monitoring and CT scanning into indoor physical model experiments can correct the experimental results so as to better reveal the propagation mechanism of artificial fractures. At present, the numerical simulation methods commonly used to study the propagation law of artificial fractures include the finite element method, extended finite element method, discrete element method, boundary element method and phase field method, etc. The models established based on these numerical simulation methods have their own advantages and applicability, so the numerical algorithms can be integrated and the numerical methods selected to model and solve the different characteristics of the propagation law of artificial fractures in different regions at different times can greatly improve the accuracy of the model solution and better characterize the propagation law of artificial fractures. The propagation law of artificial fracture in the fracturing process is mainly influenced by geological factors and engineering factors, so when conducting research, geological factors should be taken as the basis, and through detailed study of geological factors, the selection of the fracturing process can be guided and engineering influencing factors can be optimized.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference168 articles.

1. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs;Sci. Bull.,2016

2. Research status and development trend of the formation mechanism of complex fractures by staged volume fracturing in horizontal wells;Acta Pet. Sin.,2020

3. Geochemistry and Organic Petrology of Middle Permian Source Rocks in Taibei Sag, Turpan-Hami Basin, China: Implication for Organic Matter Enrichment;ACS Omega,2021

4. Application of 3D static modeling for optimal reservoir characterization;J. Afr. Earth Sci.,2019

5. Integrated wireline log and seismic attribute analysis for the reservoir evaluation: A case study of the Mount Messenger Formation in Kaimiro Field, Taranaki Basin, New Zealand;J. Nat. Gas Sci. Eng. Fract. Mech.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3