Estimation of Temperature Profiles using Low-Frequency Distributed Acoustic Sensing from In-Well Measurements

Author:

Bradley Nicholas1ORCID,Haavik Kjetil Eik2ORCID,Landrø Martin3ORCID

Affiliation:

1. Norwegian University of Science and Technology (NTNU) (Corresponding author)

2. Equinor ASA

3. Norwegian University of Science and Technology (NTNU)

Abstract

Summary Distributed fiber-optic sensing for in-well measurements is primarily used for monitoring purposes. Distributed acoustic sensing (DAS) is used to record acoustic disturbances and is sensitive to changes in strain, pressure, and temperature. Distributed temperature sensing (DTS) is used to measure temperature along the fiber. Here, we compare temperature changes measured by DAS and DTS in wells over different time periods. We affirm the linear dependency between DAS’s phase change and temperature, with the derived strain rate being proportional to the time derivative of the temperature response. Given that low-frequency (LF) DAS is sensitive to strain, pressure, and temperature effects, one must choose quiet periods in the well or condition the data to only analyze the effect of temperature on the fiber. We show that LF-DAS data can be used to track temperature changes over several weeks. We then propose a method, using liquid column movements, to invert LF-DAS data for absolute temperature profiles. The temperature profile in a well can be measured using DTS. However, DTS data are not always available, and conventional Raman scattering DTS is not used in subsea wells with long lead-in lengths. Hence, it would be desirable to acquire the temperature response from LF-DAS data to use as a multipurpose tool for in-well monitoring. Here, we show that when purely investigating the response to an initial displacement of the fluid column (i.e., from rest), LF-DAS can be used along with reference sensors, such as the wellhead and downhole temperature gauge data to estimate the depth variations in temperature in production and injection wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference43 articles.

1. Bakku, S. K . 2015. Fracture Characterization from Seismic Measurements in a Borehole. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

2. Monitoring Hydraulic Fracturing Using Distributed Acoustic Sensing in a Treatment Well;Bakku,2014

3. Pressure Sensitivity of a Clad Optical Fiber;Budiansky;Appl Opt,1979

4. Distributed Acoustic Sensing: State of the Art;Cannon,2013

5. Use Of The Temperature Log For Determining Flow Rates In Producing Wells;Curtis,1973

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3