Affiliation:
1. GDF SUEZ
2. Institut Français du Pétrole
Abstract
Summary
One of the main concerns in the oil and gas business is generating reliable reservoir hydrodynamics forecasts. Such profiles are the cornerstones of optimal technico-economical management decisions. A workflow combining different methods to integrate and reduce most of the subsurface uncertainties using multiple history matched models (explaining the past) to infer reasonably reliable forecasts is proposed.
A sensitivity study is first performed using experimental design to scan the whole range of static and dynamic uncertainty parameters using a proxy model of the fluid-flow simulator. Only the most sensitive ones with respect to an objective function (OF) (quantifying the mismatch between the simulation results and the observations) are retained for subsequent steps.
Assisted history-matching tools are then used to obtain multiple history-matched models.
To obtain probabilistic pressure profiles, multiple history-matched models are combined with the uncertain parameters not retained in the sensitivity study, using the joint modeling method.
Another way to constrain uncertain parameters with observation data is to use Bayesian framework where a posteriori distributions of the input parameters are derived from the a priori distributions and the likelihood function. The latter is computed through a nonlinear proxy model using experimental design, kriging, and dynamic training techniques.
These two workflows have been applied to a real gas storage case submitted to significant seasonal pressure variations. The obtained probabilistic operational pressure profiles for a given period are then compared to the actual gas storage dynamic behavior so that we can compare the two approaches and assess the added value of both proposed workflows.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献