Best Practices of Assisted History Matching Using Design of Experiments

Author:

Li Boxiao1,Bhark Eric W.2,Gross (ret.) Stephen1,Billiter Travis C.1,Dehghani Kaveh1

Affiliation:

1. Chevron Energy Technology Company

2. Chevron Asia Pacific E&P Company

Abstract

Summary Assisted history matching (AHM) using design of experiments (DOE) is one of the most commonly applied history-matching techniques in the oil and gas industry. When applied properly, this stochastic method finds a representative ensemble of history-matched reservoir models for probabilistic uncertainty analysis of production forecasts. Although DOE-based AHM is straightforward in concept, it can be misused in practice because the work flow involves many statistical and modeling principles that should be followed rigorously. In this paper, the entire DOE-based AHM work flow is demonstrated in a coherent and comprehensive case study that is divided into seven key stages: problem framing, sensitivity analysis, proxy building, Monte Carlo simulation, history-match filtering, production forecasting, and representative model selection. The best practices of each stage are summarized to help reservoir-management engineers understand and apply this powerful work flow for reliable history matching and probabilistic production forecasting. One major difficulty in any history-matching method is to define the history-match tolerance, which reflects the engineer's comfort level of calling a reservoir model “history matched” even though the difference between simulated and observed production data is not zero. It is a compromise to the intrinsic and unavoidable imperfectness of reservoir-model construction, data measurement, and proxy creation. A practical procedure is provided to help engineers define the history-match tolerance considering the model, data-measurement, and proxy errors.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3