Advanced Analytical Tools for Fingerprinting, Production Allocation, & Improved/Enhanced Oil Recovery Monitoring

Author:

Swearingen Jerry1,Araujo De Itriago Yani1

Affiliation:

1. SGS North America, Inc.

Abstract

Abstract Demands are being placed on service companies to provide non-evasive analytical solutions that measure the contribution of individual hydrocarbon streams in a commingled system. This often involves being able to differentiate fluids which have similar compositions. An advanced analytical workflow has been developed which includes chromatographic techniques along with a suite of stable isotope ratio analyses that look at unique Natural Tracers/Markers in individual hydrocarbon or brine streams. This paper will look at how the Natural Tracer methodology can be applied to fingerprinting, production allocation and IOR/EOR projects. A variety of laboratory-based techniques were used to evaluate end member fluids, commingled fluids, and various synthetic blends. Gaseous streams were analyzed using compound specific stable isotope ratio mass spectrometry systems (CS-IRMS) looking at carbon and hydrogen isotopes of the carbon dioxide, methane, ethane, etc. present. Aqueous streams were analyzed using a combination of conventional physiochemical (complete water) and water oxygen and hydrogen stable isotope analysis. Liquid hydrocarbon systems were assessed using conventional high-resolution gas chromatography and 2-dimentional gas chromatography (GCxGC). Analysis of the data includes simple plots to visualize differences between fluid sources and a linear regression analysis to look at the mixing relationships between synthetic blends and commingled field samples. The advanced analytical workflow allowed for the allocation determination of hydrocarbon systems with both similar and contrasting compositions. The GCxGC method, for hydrocarbon liquids, allows for a higher resolution separation where a single peak using conventional gas chromatography can be composed of multiple types of compounds. In this instance the conventional GC and GCxGC yielded comparable allocation results. For gas phase allocation, using carbon and hydrogen isotope ratios (δ13C and δ2H) of methane and ethane yielded linear mixing relationships in the two-production systems that were analyzed. Allocation values were successfully calculated for these binary systems with an outlying datapoint resulting in the client initiating an investigation to confirm flow meter readings. For an IOR/EOR application, the δ13C of methane show sufficient contrast between injected and produced gases that were sampled from a variety of wells. In this instance the gas molar compositions were similar so the only means to identify injection gas breakthrough in producing wells was by the CS-IRMS analysis technique. Complete physiochemical and water isotope ratio (δ18O and δ2H) analysis also show contrasting signatures between injection and produced water. An advanced analytic workflow was developed to incorporate commercially available, non-evasive techniques to production allocation and IOR/EOR projects. For production allocation, this technique will not replace traditional metering but can be used as a tool to identify problems with the metering/monitoring systems in the field.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3