The Unconventional Unconventionals: Tectonically Influenced Regions, Stress States and Casing Failures

Author:

Casero A..1,Rylance M..1

Affiliation:

1. BP

Abstract

Abstract Not all unconventional plays are created equal, in a substantial number of regions around the world the tectonic environment is quite different from the typically relaxed and more passive states found widely in most, if not all, of the US unconventional plays. This is merely a function of the relative proximity of such plays to distinct geological features characterized by active tectonic plates and with dynamic margins and recent activity. The Nazca plate associated with the Andes, the Arabian plate linked with the Al-Hajar mountains and the Indian plate connected with the Himalayan mountain range are just a few examples of tectonically influenced regions, where potential hydrocarbon traps are subject to complex states of stress generated by convergent plates, subduction zones and associated faulting. This scenario often translates into severe strike-slip and reverse fault stress states. Additionally, the presence of both multi-layered and laminated formation geology as well as the presence of overpressure and pressure differentials, typical of tight gas and shale gas, can exacerbate this situation even further. This situation can result in an extremely challenging environment for the successful execution of hydraulic fracturing and the associated development of unconventional resources. This paper will demonstrate, that such complex stress-states will directly affect well completions and hydraulic fracturing in a multitude of ways, but that some of the most impactful consequences are often severe casing failures, production-liner restrictions and complex fracture initiation scenarios. Casing failures are responsible for increased intervention costs as well as higher costs for the upgraded and strengthened wells. Equally, such issues can severely impair efficient execution of the completion plan and create a bottle-neck to subsequent well production. Horizontal, complex and pancake fractures will typically develop in strike-slip / reverse fault stress states, often resulting in fracture conductivity and connectivity loss that will greatly impair the eventual well performance. Layer interface slippage and natural fault re-activation are dominant mechanisms for hydraulic fracture induced casing failures. Examples of micro-fracs, micro-seismic and other diagnostics will be presented aiming to document the practical difficulties encountered while completing wells in these complex environments. This paper will demonstrate that unconventional development in such environments requires a renewed focus on all aspects of well design and construction, from directional drilling and lateral placement to casing selection and lower completion design. All these considerations are made with the goal of enabling the competent delivery of a highly effective and conductive fracture network, to efficiently access and produce the hydrocarbon resource.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3