Aquifer Management To Accelerate CO2 Dissolution and Trapping

Author:

Anchliya A..1,Ehlig-Economides C..2,Jafarpour B..2

Affiliation:

1. Chevron

2. University of Southern California

Abstract

Summary Bulk-phase CO2 injection into saline aquifers can provide substantive reduction in CO2 emissions if the risk arising from aquifer pressurization is addressed adequately through mechanisms such as brine production out of the system (Anchliya 2009). While this approach addresses the risks associated with aquifer pressurization it does not address the problem of ensuring CO2 trapping as an immobile phase and its accumulation at the top of the aquifer. The performance of bulk-CO2-injection schemes highly depends on the seal-integrity assessment and presence of thief zones. The accumulated pocket of free CO2 can readily leak through a breach in the aquifer seal. Ideally, the aquifer should be monitored as long as the free CO2 is present, but if the CO2 is not immobilized, it is expected to remain underneath the seal rock for more than 1,000 years. Therefore, long-term monitoring of the seal integrity and avoiding leakage will be very costly. To minimize the free CO2 below the caprock, we propose an engineered system to reduce aquifer pressurization and accelerate CO2 dissolution and trapping. We achieve these objectives through effective placement of brine injection and production wells to facilitate the lateral movement (hence, residual and solubility trapping) of CO2 in the aquifer and impede its upward movement. The simulation results for example engineered well configurations in this paper suggest that substantial improvements in immobilizing CO2 can be achieved through increasing enhanced solubility and residual trapping that result from better CO2-injection sweep efficiency. This approach has the potential to greatly reduce the risk of CO2 leakage both during and after injection. The controlled injection of CO2 with this technique reduces the uncertainty about the long-term fate of the injected CO2, prevents CO2 from migrating toward potential outlets or sensitive areas, and increases the volume of CO2 that can be stored in a closed aquifer volume during the CO2-injection period. Field-scale compositional simulation cases are discussed, and sensitivity studies are used to provide guidelines for well spacing and flow rates depending on aquifer properties and the volume of CO2 to be stored. Although it requires additional drilled wells, the active engineered configuration proposed for CO2 injection significantly reduces the reservoir volume required to effectively sequester a given volume of CO2, and the increase in the cost caused by additional wells is recovered by dramatic reduction in monitoring cost.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3