An application of a genetic algorithm in co-optimization of geological CO2 storage based on artificial neural networks

Author:

Vaziri Pouya1ORCID,Sedaee Behnam1ORCID

Affiliation:

1. Institute of Petroleum Engineering, Chemical Engineering Department, College of Engineering, University of Tehran , Tehran , Iran

Abstract

Abstract Global warming, driven by human-induced disruptions to the natural carbon dioxide (CO2) cycle, is a pressing concern. To mitigate this, carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources. Deep saline aquifers are of particular interest due to their substantial CO2 storage potential, often located near fossil fuel reservoirs. In this study, a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow. Due to the time-consuming nature of each realization of the numerical simulation, we introduce a surrogate aquifer model derived from extracted data. The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework. Unlike previous studies, which typically focused on single-parameter optimization, our research addresses this gap by performing multi-objective optimization for CO2 storage and breakthrough time in deep saline aquifers using a data-driven model. Our methodology encompasses preprocessing and feature selection, identifying eight pivotal parameters. Evaluation metrics include root mean square error (RMSE), mean absolute percentage error (MAPE) and R2. In predicting CO2 storage values, RMSE, MAPE and R2 in test data were 2.07%, 1.52% and 0.99, respectively, while in blind data, they were 2.5%, 2.05% and 0.99. For the CO2 breakthrough time, RMSE, MAPE and R2 in the test data were 2.1%, 1.77% and 0.93, while in the blind data they were 2.8%, 2.23% and 0.92, respectively. In addressing the substantial computational demands and time-consuming nature of coupling a numerical simulator with an optimization algorithm, we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm. Within this framework, we conducted 5000 comprehensive experiments to rigorously validate the development of the Pareto front, highlighting the depth of our computational approach. The findings of the study promise insights into the interplay between CO2 breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3