Enhancing Oil Recovery of Low-Permeability Berea Sandstone through Optimized Nanofluids Concentration

Author:

Hendraningrat Luky1,Li Shidong1,Torsaeter Ole1

Affiliation:

1. Norwegian University of Science and Technology (NTNU)

Abstract

Abstract Current global demand for fossil fuel such as oil is still high. This encourages oil and gas industries to improve their effort of finding new discoveries, developing technique and maximizing recovery of their current resources including in low-permeability reservoir. Enhanced oil recovery (EOR) is a technique to enhanced ultimate recovery. Since technology has been continuously developed such as nanotechnology/nano-size material, EOR methods have improved. One of them is Nano-EOR that triggered great attention in last decade. Nanoparticles may alter the reservoir fluid composition and rock-fluid properties to assist in mobilizing trapped oil. Most of observation from lab-scale reported that it seems potentially interesting for EOR. Since reservoir management is very essential for the success of all improved/enhanced oil recovery (IOR/EOR) methods, optimizing nanofluids concentration is a proposed reservoir management to maximize oil recovery using Nano-EOR in this paper. Low-permeability water-wet Berea sandstones core-plugs with porosity ranged 13-15% and permeability ranged 5-20 mD were tested. A hydrophilic silica nanoparticles with primary particle size 7 nm was employed without surface treatment. Nanofluids with various concentration ranged 0.01 - 0.1 wt.% were synthesized with synthetic saline water for optimizing study. The wettability alteration due to nanofluids was observed; coreflood experiment was conducted and compared its displacement efficiency. The results observed a range of nanofluids concentration that could maximize oil recovery in low-permeability water-wet Berea sandstone. Although contact angle of aqueous phase decreases as nanofluids concentration increase which means easier of oil to be released but we observed that higher concentration (e.g. 0.1 wt.%) has a tendency to block pore network and will decrease or even without additional oil recovery. This study provides if concentration of nanofluids has an important parameter in Nano-EOR and could be optimized to maximize oil recovery of low-permeability water-wet Berea sandstone.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3