Catalog of Well-Test Responses in a Fluvial Reservoir System

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 180181, “Catalog of Well-Test Responses in a Fluvial Reservoir System,” by J.L. Walsh and A.C. Gringarten, Imperial College London, prepared for the 2016 SPE Europec featured at the 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May–2 June. The paper has not been peer reviewed. Well-test analysis in fluvial reservoirs remains a challenge because of the depositional environment conducive to significant internal heterogeneity. Analytical models used in conventional analysis are limited to simplified channel geometries and, therefore, fail to capture key parameters such as sand-body dimensions, orientations, and connectivity, which can affect control-fluid flow and pressure behavior. The complete paper aims at a better understanding of the effect of channel content in complex fluvial channel systems on well-test-derivative responses. Methodology Geological Modeling. 3D geological models with a centrally located well were generated and populated with varying fluvial geologies. A 6950-m×6950-m×300-ft geological model was set up that allowed the averaging effects of the heterogeneities and the reservoir boundaries to be visible on the derivative at late times. Modeling the geology of a fluvial system is challenging because of changes in channel amplitude, amalgamation, and other processes through geological times, which yield highly variable distribution and shapes of fluvial deposits. Field X was modeled as isolated elliptical sand bodies and channel bodies, with sand-body dimensions of 105 m (width)×420 m (length)×5 ft (thickness) for the base case. The sand and channel bodies are schematically represented in Figs. 1 and 2. Object-oriented modeling was used instead of stochastic, sequential indicator simulation and Gaussian simulation to retain control over the modeling parameters.  Numerical Simulation. The corresponding pressure and derivative dynamic responses were generated using a proprietary finite-element simulator with a uniform grid and a fine local grid refinement (LGR) around the wellbore. The fluid was black oil at a reservoir pressure greater than the saturation pressure, and the relative permeability to water was low enough to limit water movement within the model. Results and Discussion of Base-Case Model A drawdown of 115 years was simulated for a geological model 6950 m×6950  m×300 ft with a cell size of 50 m×50 m×5 ft in the x, y, and z directions, respectively (total cell count without LGR=1,159,260), with a fine Cartesian LGR around the wellbore to reduce numerical artifacts around the wellbore (total cell count with LGR=1,327,200). The model consists of two facies. All simulations were performed without including wellbore dynamics or mechanical skin.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3