Modeling Pressure-Transient Data for Characterizing the Formation Damage in Water Injection Wells Operating above the Fracturing Pressure

Author:

BinAkresh Saud A.1,Rahman N. M.1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Injection wells are widely used in the petroleum industry to support sustained oil production. Water is injected into the reservoir for filling in the void space left by produced oil and to maintain the reservoir pressure. These injectors are frequently evaluated with fall-off tests to assess their injectivity with time. However, most fall-off tests on these wells are unexpectedly dominated by prolonged storage effects with a long unit-slope line on the log-log plot. As a result, the radial flow regime on the pressure derivative plot gets a little chance to develop within the stipulated test period. A high skin damage factor with an abnormally-high storage coefficient (e.g., 1 to 3 bbl/psi, which is one or two orders of magnitude larger than the typical values in regular wellbores) have to be introduced to the well test models to match the pressure behavior from these wells. This anomalous behavior suggests that the wellbore is connected to additional storage volume due to an induced fracture system around the well, having been intersected by a section of it. Apparently, these fractures close gradually after shutting in the well for a pressure fall-off test, manifesting as a prolonged storage effect in the data. This can be explained with the fact that most of the injectors inject water under fracturing conditions, which induce large fractures around the wellbore over time. The fracture system might play a role in taking the damage further inside the reservoir and complicate subsequent remedial work to restore well's injectivity. In this paper, we will show and discuss several fall-off tests from water injection wells in giant oil fields in the Middle East. The results of these tests, conducted over the years, are to show how the entire test duration is progressively dominated by larger wellbore storage with increasing fracture volume around the wellbore. A changing wellbore storage model (Spivey and Lee) is useful in illustrating the phenomenon of dual storage effect – one due to the wellbore, followed by the other one due to the fracture volume. The model is also used to identify the damage conditions of two regions – one just around the wellbore and the other is located slightly deeper into the reservoir.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3