A Comprehensive Work Flow To Characterize Waterflood-Induced Fractures by Integrating Real-Time Monitoring, Formation Test, and Dynamic Production Analysis Applied to Changqing Oil Field, China

Author:

Wang Yang1,Cheng Shiqing2,Zhang Kaidi3,He Youwei4,Feng Naichao2,Qin Jiazheng2,Luo Le2,Yu Haiyang2

Affiliation:

1. China University of Petroleum, Beijing, and Pennsylvania State University

2. China University of Petroleum, Beijing

3. Lusheng Petroleum Development Company Limited, Sinopec Shengli Oilfield Company

4. China University of Petroleum, Beijing, and Texas A&M University

Abstract

Summary It is well-known that water injection may induce formation fracturing in tight reservoirs. Especially when the field-geology condition is complex and the waterflood-induced fractures (WIFs) are not well-identified in time, the induced fractures can be of the same order as the well spacing, which has a significant, and generally undesired, impact on both areal sweep and vertical conformance. Therefore, the onset of WIFs must be identified in a timely manner, and the waterflooding performance must be evaluated comprehensively to formulate an appropriate strategy over time. A new work flow, containing analytical/semianalytical, statistical, and numerical techniques that are based on flow-rate/BHP and formation-testing data, is applied to identify the WIFs, diagnose waterflooding direction and front distribution, analyze interwell connectivity, and interpret abnormal bottomhole-pressure (BHP) behaviors in the Changqing Oil field. The work flow includes three modules: First, real-time monitoring and analysis, including modified Hall plot, evolving skin analysis, and injection/fracturing index methods, are used to identify the start of WIFs. Then, the formation-testing module, consisting of step-rate test (SRT), radioactive-tracer logging, and passive seismic method, is applied to investigate the formation-fracturing pressure, and uneven waterflooding performance in the areal and vertical directions. On the basis of the two former modules, we adapt the third module, which includes injector/producer relationships (IPRs) and the constrained multiple-linear-regression (MLR) method, to quantitatively investigate the waterflooding direction by injection/production rates. A new model—injection well with waterflood-induced fracture (IWWIF)—is proposed to characterize the abnormal BHP behaviors considering the properties variation (shrinking fracture length and decreasing fracture conductivity) of WIFs during the falloff period. Compared with an individual method, the ITD (which is the abbreviation of WIF identification, formation testing, and dynamic production analysis) work flow is developed to obtain a comprehensive and deep understanding of waterflooding performance. The main emphasis of this study is to integrate different approaches to address the key uncertainties rather than analyze each data source individually. On the basis of the results obtained by this work flow, the operators can make a more-proactive and -reasonable decision on waterflooding management. The work flow proposed in this paper gives a useful guidance in short- and long-term waterflooding management in tight reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3