Water Quality Control and Its Importance in Waterflooding Operations

Author:

Patton Charles C.1

Affiliation:

1. C.C. Patton & Assocs.

Abstract

Distinguished Author Series articles are general, descriptiverepresentations that summarize the state of the art in an area of technology bydescribing recent developments for readers who are not specialists in thetopics discussed. Written by individuals recognized as experts in the area, these articles provide key references to more definitive work and presentspecific details only to illustrate the technology. Purpose: to informthe general readership of recent advances in various areas of petroleumengineering. Introduction The term "water quality" has many meanings, most of which are defined by theend use of the water in question. In oilfield waterflooding, water quality isusually defined in terms of the plugging tendency of the water. Ideally, thequality of the water should be such that there is no reservoir plugging, andhence no loss of injectivity during the life of the flood. In addition, the injection system must be protected against corrosion topreserve its physical integrity and to prevent the generation of insolublecorrosion products. Any insoluble material in water, either solid or liquid, can contribute toplugging. This includes formation solids (sand, silt, or clay), corrosionproducts, water-formed scales, bacterial growths and algae, oil (both crude andlubricating), and undissolved treating chemicals. The contaminants primarily responsible for plugging fall into threecategories:Present at the source. Some of theprimary contaminants commonly present at the source include: in produced water- oil, corrosion products from the production system, bacteria; in water supplywells - formation solids, corrosion products, bacteria; and in surface waters -dissolved oxygen, bacteria, suspended inorganic solids, marine organisms.Generated within the injectionsystem. Contaminants generated within the system may includecorrosion products, bacterial masses, biogenic hydrogen sulfide, andscale.Added to the injectionsystem. Sometimes, intentionally added materials ultimatelycontribute to plugging. For example, contaminants such as dissolved oxygen, bacteria, suspended solids, and usually oil are the inevitable results ofpumping trucked water or pit water into an injection system. Improperlyselected corrosion inhibitors that are not sufficiently soluble in theinjection water can contribute to plugging. In addition, contaminants may inadvertently enter the system. One of theprimary problems in most injection systems is the entry of dissolved oxygenthrough leaking pump seals and open hatches on water tanks.1 Pumplubricating oil may also enter the system in amounts sufficient to contributeto plugging. We can either accept the water quality at the source or improve it bymechanical and/or chemical processing. Next, the challenge is to preserve thequality by controlling contaminant generation or addition. The difficulty of preserving water quality is essentially a direct functionof the length and complexity of the injection system. The result is that thequality of the water reaching remote injection wells in long systems is oftenconsiderably worse than it was at the source. Water Quality Requirements When the quality of the injection water is inadequate, reservoir pluggingresults. The consequence of plugging is reduced sweep efficiency, which resultsin decreased recovery and, ultimately, loss of revenue. In addition, operational costs are increased because of workovers and system repairsrequired to restore injectivity. The quality required for a given reservoir will be primarily a function ofreservoir permeability, assuming true matrix injection into the reservoir porespace. Tight, low-permeability zones generally require better-quality waterthan higher-permeability zones. If natural fracture systems are available for fluid transport or ifinjection is carried out under parting conditions, then much poorer quality canbe tolerated with few apparent injectivity problems. Injection throughfractures, however, offers a high probability of reduced sweep efficiency. Despite numerous attempts to correlate water quality parameters withreservoir rock properties,2,3 we are currently unable toquantitatively predict the minimum water quality required for trouble-freeinjection into a given formation. Onsite core flow testing has been used toestimate quality requirements,4 but in most cases minimum water qualitystandards evolve through experience. Formation Sensitivity Some sandstones contain clays that swell upon contact with low-salinitywater. Although not caused by suspended matter in the injection water, reducedpermeability and injectivity are the results. The susceptibility of sandstoneformations to this type of impairment should be assessed before the initiationof any water injection project.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3