Online Quality Measurements of Total Suspended Solids for Offshore Reinjection: A Review Study

Author:

Hansen Dennis SeverinORCID,Bram Mads ValentinORCID,Lauridsen Steven Munk ØstergaardORCID,Yang ZhenyuORCID

Abstract

The importance and awareness of accurate online water quality measurements increase every year in the oil and gas sector, whether it is for reducing oil discharge, preparing produced water for reinjection, or improving operational performance. For online measurement techniques to yield valuable analytical information, an understanding of their outputs must be established. Produced water reinjection has gained increasing attention in the last decade, as it can minimize negative environmental impacts by reducing oil discharge and has the potential to extend the economic life of reservoirs. To increase the amount of produced water that can be reinjected, the water must be maintained at a sufficient quality to prevent unintended formation damage. This review paper thoroughly describes different water quality issues related to suspended solids that can occur in an injection water treatment system and how the issues are often interlinked. A case study of measuring the total suspended solids concentration of seawater sampled from the Danish sector of the North Sea has been carried out to effectively quantify water quality in an injection water treatment facility. Furthermore, numerous on- and in-line techniques have been evaluated as candidates for measuring suspended solids. The last part of the paper discusses considerations regarding future microscopy analyzers based on five promising online microscopy technologies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference199 articles.

1. Energy Access Outlook 2017,2017

2. The Production Gap: The Discrepancy between Countries’ Planned Fossil Fuel Production and Global Production Levels Consistent with Limiting Warming to 1.5 °C or 2 °C,2019

3. Meeting Energy Needs: The Unique Role of Oil and Gas,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3