Near-And Remote-Field Eddy Current Data Fusion: Wellbore Casing Inspection with Hybrid Neural Networks

Author:

Ooi Guang An1,Mostafa Tarek M.1,Khater Moutazbellah1,Ozakin Mehmet Burak1,Bagci Hakan1,Ahmed Shehab1

Affiliation:

1. King Abdullah University of Science and Technology

Abstract

Abstract The structural stability of wellbores depends on the concentric steel casings that are lowered into the wells and cemented in place. Such casings are often subjected to intense forces and high pressure, as well as being exposed to corrosive elements. As a result, defects such as pits, cracks, and other forms of metal loss inevitably occur on the casings. The presence of defects poses a threat to wellbore integrity that increases overtime as the metal losses increase in both depth of penetration and surface area, which may result in severe environmental and financial damage if left unchecked. Hence, many acoustic, visual, and electromagnetic (EM) inspection methods have been developed to assess the health of casings to facilitate risk management decisions. EM inspection methods are widely used because of their ability to detect metal loss on multiple concentric casings while being largely unaffected by the cement between the casings. While visual and acoustic methods generally produce results that are readily interpretable, EM measurements are often more difficult to utilize due to their high nonlinearity. This research investigates the EM inspection of wellbore casings using the near- and remote-field eddy current (NFEC and RFEC) methods. Cross-sectional images are reconstructed by a hybrid neural network (HNN) with two parallel modules that map EM measurements to the pixels of the images. A specialized neural network module is designed for each of these methods. Both modules include convolutional and recurrent layers in their structures to extract spatial and sequential attributes from EM data. Using this approach, the physical locations of metal loss and casing material are inherently represented by the coordinates of the pixels on the reconstructed image, while the values of the pixels represent the probability of metal loss at their location. In addition, in-depth analyses show that this approach is generalizable to metal loss scenarios that are different in terms of shape and location from the training data.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3