Experimental Set-Up for Testing Cement Sheath Integrity in Arctic Wells

Author:

Albawi A.1,De Andrade J.1,Torsæter M.2,Opedal N.2,Stroisz A.2,Vrålstad T.2

Affiliation:

1. Norwegian University of Science and Technology (<acronym>NTNU</acronym>)

2. SINTEF Petroleum Research

Abstract

Abstract Petroleum activities in the sensitive Arctic environment require increased focus on well integrity, since even small leaks can affect production and surrounding ecosystems. It is therefore of the utmost importance that the sealing ability of the annular well cement can be maintained here. This is challenging in normal locations, and difficulties are intensified when moving north. Due to the harsh topside conditions in the Arctic, the operational windows are short – and production will necessarily be turned on/off repeatedly. The temperature of any unheated injected fluid will also be lower here. As a result, Arctic wells will be subjected to strong downhole temperature variations over their life cycles. These cause the volume of well construction materials, like casing steel and annular well cement, to repeatedly expand and contract, which might lead to loss of well integrity through debonding or cracking of the annular cement sheath. In the present paper we describe an experimental laboratory set-up that has been designed for studying the sealing ability of annular cement as a well is exposed to thermal cycling. The samples studied are small-scale well sections including casing, annular cement and rock formation. These are exposed to thermal cycles by using a computer controlled thermal platform, which heats up by means of electrical resistance and cools down through expansion of liquefied nitrogen. It has a temperature span from – 50°C to +200°C, and adjustable heating/cooling rates and holding times. During the thermal cycling experiments, any cracking and debonding occurring in the system is continuously monitored in-situ by Acoustic Emission (AE). To demonstrate the functioning of the set-up we present some initial results obtained using ordinary Portland G cement as annular sealant. In this work, the AE events collected during cycling are compared with data from post-experiment computed tomography (CT) scans. The testing methodology presented in this paper is flexible, thus rock type, annular sealant type and casing type can be varied at will. Mud or filter cake effects can also be included. For all samples, the procedure will enable determination of when leakage paths appear (as a function of applied thermal cycles and time), where they appear (in the bulk cement or at its interfaces) and what their sizes, geometries and distributions are. This opens for improved material choices for Arctic well construction, and optimization of operational patterns and remediation strategies for the high north.

Publisher

OTC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3