Delivering Automated Reservoir Management with Birth of the First Ever Universal Inflow Control System UICS

Author:

Killie Rune1,Paterson Grant J.1,Lager Thorleif1

Affiliation:

1. Innowell Solutions AS

Abstract

Abstract Conventional ICDs were invented for long horizontal wells to promote a more uniform inflow profile. Later, AICDs were developed, which utilize viscosity contrast between fluids to impose a larger hydraulic resistance in sections with inflow of undesired fluids, like gas and water. However, these AICD technologies cannot be used to choke back inflow of water in reservoirs where oil and water have similar viscosities, and they also tend to impose large pressure drops even for single-phase oil at high flow rates. The objective of the work presented here has therefore been to develop an inflow control technology that removes these limitations. The resulting Density Activated Recovery (DAR™) technology utilizes difference in fluid density rather than viscosity contrast to control fluids downhole. It is a fully autonomous, binary system that is either fully open or closed, where "closed" means that it only allows a small pilot flow. More specifically, it can be considered a "dual ICD" with flow through a large port when open, and a small port when "closed". The flow capacity and choking efficiency are therefore fully defined by the diameters of these two ports. Furthermore, it can close and reopen at any pre-determined water and gas fractions, that are completely insensitive to flow rate, viscosity and Reynolds number. This makes it universally applicable to control any wellbore fluid along the entire reservoir section. After successful prototype testing in 2018, the DAR technology has now undergone a comprehensive full-scale system-qualification program including a final flow performance test where the system was tested at 240 bar and 90ºC with saturated 0.8 cP oil. The tests demonstrated up to seven times higher flow capacity with the density-based DAR technology compared with viscosity-dependent AICD technologies. The system successfully and repeatedly closed and reopened for both gas and water. As oil and water had similar viscosities, the tests also proved how this technology can be used to stop undesired inflow of water in light-oil reservoirs. Being insensitive to flow rate, the DAR system is also insensitive to local variations in pressure and productivity along the reservoir section, which reduces the negative consequences of geological uncertainty and allows the same design to be used at every location in the well. It can also be configured to ensure complete mud removal during well cleanup and can even stop inflow of water in gas wells, where the undesired fluid has higher viscosity than the desired fluid. More importantly, this technology can deliver automated reservoir management to a level where it influences how wells are drilled and fields are developed. Accelerated oil production and the reduced need for reinjection of gas/water will also reduce the associated greenhouse gas (GHG) emissions considerably.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3