Performance Evaluation and Formation Damage Potential of New Water-Based Drilling Formulas

Author:

Argillier J. F.1,Audibert Annie1,Longeron Daniel1

Affiliation:

1. Inst. Français du Pétrole

Abstract

Summary Formation damage risks are well documented for standard mud formulations but they are poorly analyzed for new types of non-polluting muds. This paper describes extensive laboratory work aimed at evaluating the behavior of these new types of mud formulations. First, static and dynamic filtration experiments were conducted on paper filters and rock slices. Examination of mud cakes by means of cryo-SEM has permitted correlation of filtration behavior with the structural characteristics of both external and internal mud cakes. Then, the simulation of the full process of mud invasion in oil-bearing reservoirs was achieved by performing static and dynamic filtration experiments in a specially designed core-holder cell containing 40 cm long sandstone core samples. Cumulative filtrate losses and pressure drops across six sections of the core, while circulating the mud and back flushing the oil, were continuously monitored to evaluate the permeability damage. Damage arising from overbalanced conditions has been evaluated in terms of cake permeability, fluid loss characterization and reduction in oil permeability after mud exposure. For the three mud compositions tested here, the filtration process in high permeability sandstones is mainly controlled by external mud cakes. Damage is severe but an additional damage due to the trapped aqueous filtrate phase can strongly affect the oil relative permeabilities. This approach has given a complete behavior understanding of new water based drilling fluid formulations including evaluation of their performances, limits of use at high temperature and assessment of risks for different operational conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Reservoir Formation Damage;2023

2. Removal of Hematite Water-Based Filter Cake Using Hydrochloric Acid;Geofluids;2022-06-03

3. A review of the various treatments of oil-based drilling fluids filter cakes;Journal of Petroleum Exploration and Production Technology;2021-12-22

4. Pore-scale analysis of formation damage; A review of existing digital and analytical approaches;Advances in Colloid and Interface Science;2021-02

5. Dynamic analysis of mud loss during overbalanced drilling operation: An experimental study;Journal of Petroleum Science and Engineering;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3