Optimizing hematite filter cake treatment using reducing agents

Author:

Siddig Osama,Elkatatny Salaheldin,Alafnan Saad

Abstract

AbstractIn drilling operations, the formation of a filter cake is crucial for well stability, but its removal post-drilling is essential to restore rock formation productivity. This study focuses on hematite-based filter cakes and investigates factors influencing their solubility and removal, addressing a significant knowledge gap in the field. The research methodology involves examining the effects of various factors, including types and concentrations of reducing agents, temperature, particle size, and treatment duration, on the dissolution process. Notably, Nuclear Magnetic Resonance (NMR) tests are employed to assess the treatment's impact on core porosity. Among the diverse reducing agents examined, ferrous chloride emerges as the optimal choice for effectively enhancing hematite solubility. Particularly, a composite solution of ferrous chloride (10 wt.%) and hydrochloric acid (6 wt.%), was highly efficient demonstrated by exhibiting rapid solubilization of hematite filter cakes. A removal efficiency of approximately 99%, with a parallel enhancement in core permeability was achieved. NMR tests reveal the treatment's success in reinstating the porosity system, which had undergone reduction due to drilling fluid particles. Crucially, the solution exhibits a considerably lower corrosion rate than concentrated hydrochloric acid, highlighting its potential to mitigate environmental concerns while ensuring efficient filter cake removal. The findings of this research provide valuable insights into optimizing post-drilling operations, balancing environmental sustainability and operational efficiency. The identified composite solution offers a promising approach to efficient filter cake removal while mitigating environmental concerns associated with corrosion. Overall, this study contributes to advancing the understanding and practice of well productivity enhancement in the oil and gas industry.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3