Experimental Study on Initial Stage of SAGD Process Using 2-Dimensional Scaled Model for Heavy Oil Recovery

Author:

Sasaki K.1,Akibayashi S.1,Kosukegawa H.1,Kato M.2,Ono K.3

Affiliation:

1. Akita Univ.

2. JODCO

3. JNOC

Abstract

Abstract The experiments on initial stages of steam assisted gravity drainage(SAGD) process have been carried out using two-dimensional scaled reservoir models to investigate its production process and performance. Rising or growing process of the initial steam chamber, its shape and area, and temperature distributions have been visualized by using video and thermal-video pictures. As a drainage mechanism, the relationship between isothermal lines and chamber interface have been presented. The temperature on the interface, where the chamber was expanding, was maintained at almost constant temperature of 80 C. Furthermore, the effect of vertical well spacing between two horizontal wells on oil recovery has been investigated. For the case of usual SAGD, oil production rate increases with increasing vertical well spacing, however the leading time to start oil production by gravity drainage becomes longer. The results show that the well spacing may be a representative length for initial stage of the process. Based on these experimental results, a modified SAGD process by adding intermittent steam injection from the lower production well have been proposed. By applying the modified process, the time to generate near break-through condition between two wells was relatively shorten, and oil production was enhanced at the stage of rising chamber compared with that of usual SAGD process. Introduction There are vast heavy oil and oilsands reserves not fully exploited, because it is not easy to produce heavy oil efficiently and economically. However, steam-assisted gravity drainage (SAGD) process has been successfully applied to oilsands fields. The process has been developed by Butler and his co-workers. Their ideas was to overcome the problems associated with the highly viscous bitumen by gravity drainage in steam chambers generated by displacement of heavy oil. As shown in the reports on the UTF projects (phase A and B) in Canada, the SAGD process (see Fig. 1) has proven to be very superior process for the recovery of the bitumen due to its high recovery factor. Chung and Chung & Butler have reported experimental results for SAGD process with scaled and visual reservoir models. Furthermore, Chow & Butler have reported the numerical simulation results matching the Chung's experimental results with the STARSTM. Recently, Mukherjee have reported the successful forecast of the performance for the phase B of the UTF project. Butler gives an excellent review of the SAGD process. In this paper, the SAGD process operated by steam injection from upper well and production from lower well like that of UTF project, is hereinafter referred as "usual SAGD." A problem of the usual SAGD process for oilsands reservoirs is leading time to generate a steam chamber in near break-through condition between two horizontal-wells before production stage by rising and expanding chamber. The more economical SAGD production should be achieved by a modified process to shorten the period of initial stage and enhanced steam injection for effective usage of steam generation and production facilities. First, we have investigated characteristics of the usual SAGD process, especially expanding rate of steam chamber by gravity drainage and effects of vertical well spacing on it. It was found that by using shorter vertical spacing between two wells, leading time is reduced while production rate after break-through becomes lower. Based on experimental results, a modified process has been proposed to start oil production earlier and enhance oil production at higher rate after break-through. In this process, steam is injected from both of upper and lower wells. Then, the lower well has both functions of production and steam injection, which is similar to the single SAGD well developed and reported by Liderth. The steam is injected intermittently from the lower well, because steam injection holes and oil production holes at the well are quite close to prevent steam break-through. P. 467

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3