Analytical Model for Unconventional Multifractured Composite Systems

Author:

Stalgorova Ekaterina1,Mattar Louis1

Affiliation:

1. IHS

Abstract

Summary This paper presents an analytical model for unconventional reservoirs with horizontal wells with multiple fractures. The model is an extension of the "trilinear flow" solution, but it subdivides the reservoir into five regions instead of three. This enables it to be used for more-complex reservoirs. Accordingly, the model can simulate a fracture that is surrounded by a stimulated region of limited extent (fracture branching), whereas the remaining reservoir is nonstimulated. In addition to modeling flow within the fracture and flow within the stimulated region, the model takes into account flow from the surrounding nonstimulated region, both parallel to and perpendicular to the fracture. The model can be used to simulate the flow in tight reservoirs with multifractured horizontal wells. In many cases, the fractures do not have a simple biwing shape, but are branched. This effectively creates regions of higher permeability around each fracture, which obviously affect the production performance significantly. However, in many tight reservoirs, in spite of their low permeability, the surrounding nonstimulated region can also be a significant contributor to long-term production. The five-region model accounts for this contribution. Thus, it is particularly valuable when generating production forecasts for reserves evaluation. The model was validated by comparing its results with numerical simulation. We found that analytical and numerical results are in good agreement only when the geometry of the system falls within certain limitations. However, these limitations are met in most cases of interest. Therefore, the model is useful for practical engineering purposes.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3