Effect of Internal Magnetic-Field Gradients on Nuclear-Magnetic-Resonance Measurements and Nuclear-Magnetic-Resonance-Based Pore-Network Characterization

Author:

Tandon Saurabh1,Heidari Zoya1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Nuclear-magnetic-resonance (NMR) measurements have been extensively used for determining porosity, pore-size distribution, and fluid saturation in porous media. However, internal gradients of the magnetic field generated by the presence of paramagnetic or diamagnetic centers such as shale or clay particles can significantly affect NMR response. Consequently, the resulting interpretation for pore-size distribution and porosity is also affected. In this paper, we quantify the effect of internal magnetic-field gradients and spatial distribution of matrix components such as clay minerals on NMR response using pore-scale NMR numerical simulations. We also quantify the influence of the aforementioned parameters on the NMR-based evaluation of porous media. We used the finite-volume method to numerically solve the Bloch (1946) equations and simulated magnetization decay in porous media. We cross validated the reliability of numerical simulations using analytical solutions given for spherical pores in different diffusion regimes. The model was then used for simulation of NMR response in the pore-scale images of sandstone and carbonate rocks. We used Larmor frequency of 2 MHz, external magnetic-field gradient of 0.10 T/m, and half-echo spacing time of 0.5 ms for simulating NMR response in pore-scale images of sandstones and carbonates. We then developed synthetic cases using actual rock images covering a wide range of spatial distribution of clay minerals (i.e., paramagnetic centers) to quantify the sensitivity of NMR decay to internal magnetic-field gradients. We quantified the sensitivity of NMR response for distribution of clays as thin laminae in the rock and as thin layers on the surface of the grains. The results showed that at low concentration (0.3 to 0.7%) of dispersed clay, there is a negligible effect of internal magnetic-field gradients on magnetization decay. At higher concentration of dispersed clay (5.1 to 7.3%), we observed a significant effect of internal magnetic-field gradients on magnetization decay. The presence of shale minerals can cause 53% variation in the location of the transverse-relaxation-time constant (T2) and up to 67% relative error in the assessment of dominant pore sizes. Shale laminations containing clay were found to produce an effect of up to 31.8% on T2 relaxation-time constant, which could cause a relative error of 50.0% in estimates of dominant pore size in the rock. The outcomes of this paper demonstrated the effect of heterogeneous rock mineralogy on NMR response. The effect of internal magnetic-field gradients generated by shale and clay on NMR becomes relevant when shale and clay particles are close to the pore fluid and their magnetic field starts to affect the distribution of magnetic field in the pore space. The results reveal the importance of characterizing the distribution of shale and clay minerals before interpreting NMR response and can potentially improve conventional techniques of pore-network characterization (pore-size distribution and pore volume) in the presence of clay minerals where internal magnetic-field gradients are not negligible.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3