A critical mini-review on the low-field nuclear magnetic resonance investigation of pore coupling effects in near-surface environments

Author:

Soto Bravo Francisca,Zhang Chi

Abstract

The assessment and monitoring of groundwater resources is of increasing importance to ensure the continuous supply of fresh water for human activity and endangered ecosystems. These groundwater resources include fully saturated aquifers, water in unsaturated soil, and water trapped as rock moisture in weathered bedrocks. Low-field nuclear magnetic resonance (NMR) is a method with unique sensitivity to pore water, as it is based on the magnetization and relaxation behavior of the spin magnetic moment of hydrogen atoms forming water molecules. It is a cost-effective and minimally-invasive technology that can help characterize the pore structures and the groundwater distribution and transport in different types of subsurface materials. However, the interpretation of NMR data from samples with complex bimodal or multimodal porous geometries requires the consideration of pore coupling effects. A pore-coupled system presents significant magnetization exchange between macro- and micropores within the measurement time, making the independent characterization of each pore environment difficult. Developing a better understanding of pore coupling is of great importance for the accurate estimation of hydrogeological parameters from NMR data. This mini-review presents the state-of-art in research exploring the two factors controlling pore coupling: surface geochemistry and network connectivity, summarizes existing experimental and numerical modeling approaches that have been used to study pore coupling and discusses the pore coupling effects in fully and partially saturated conditions. At the end of this review, we outline major knowledge gaps and highlight the research needs in the vadose zone.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference65 articles.

1. Freeze–thaw impact on sandy clay in artificial frozen walls: an investigation of shear strength and pore-size distribution;An;Int. J. Geomech.,2022

2. Diffusional coupling between micro and macroporosity for NMR relaxation in sandstones and grainstones;Anand;Petrophysics,2007

3. NMR diffusional coupling: effects of temperature and clay distribution;Anand;Petrophysics,2008

4. A review of the principles and applications of the NMR technique for near-surface characterization;Behroozmand;Surv. Geophys.,2015

5. Estimating the surface relaxivity as a function of pore size from NMR t2 distributions and micro-tomographic images;Benavides;Comput. Geosci.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3