Evaluation of Bitumen-Solvent Properties Using Low Field NMR

Author:

Wen Y.1,Bryan J.2,Kantzas A.2

Affiliation:

1. University of Calgary

2. University Of Calgary And Tomographic Imaging And Porous Media Laboratory

Abstract

Abstract The VAPEX (vapour extraction) process is a new technique for the recovery of highly viscous heavy oil and bitumen. This process involves injection of vapourized hydrocarbon solvent into heavy oil and bitumen reservoirs and production of the resulting solvent-diluted oil that drains by gravity in a horizontal well. Research has shown that this process is highly efficient and that different solvents give different results. In this paper, six different solvents were added to several oils of different viscosities and densities. The solvents were added in different ratios to each of the oils and NMR spectra were obtained. The mixture of solvent and heavy oil or bitumen produces a spectrum that is distinctly different than that of the solvent or oil alone. From the shape and amplitude of the NMR spectra, one can calculate the amount of solvent present. Furthermore, one can predict the viscosity of the mixture without any additional viscosity measurements. As asphaltenes precipitate with the addition of solvent(s), one can correlate the amount of asphaltene reduction to changes in the NMR spectra. In this manner, NMR can possibly be used to show the asphaltene precipitation of different oils in the presence of solvent(s). By measuring the amount of asphaltene precipitation, NMR can also provide an indication of in situ upgrading of the oil that occurs with the addition of solvent(s). Using NMR as an analysis tool, the effect of the different solvents on viscosity reduction and asphaltene precipitation is quantified. Introduction The VAPEX process was proposed by Butler and Mokrys(1) as an alternative to Steam Assisted Gravity Drainage (SAGD) for thin reservoirs where heat lost in the formation would make the process uneconomic. In the VAPEX process, vapour solvents, instead of steam, are injected in the reservoir. The solvents dissolve into the bitumen and dramatically reduce its viscosity. The diluted bitumen can drain down to the producer by gravity. Since the paper outlining the VAPEX process was originally presented, many valuable experimental studies were published using different systems, including Hele-Shaw cells(2–4), pore network glass micromodels(5), Magnetic Resonance Imaging (MRI)(6), and PVT experiments(7). In this paper, low field Nuclear Magnetic Resonance (NMR) was used to measure the physical properties of heavy oil and bitumen samples with kerosene, hexane, naphtha, haptane, pentane, and toluene at several ratios at room temperature and pressure. Low field nuclear resonance (NMR) has vast potential as a tool for measuring properties of a reservoir fluid(8). NMR measurements are simple and non-destructive, but capable of yielding an incredible wealth of information about the reservoir fluid under investigation in a particular sample(9–10). The mixture viscosity decreases dramatically as the ratio of the injected solvent to heavy oil or bitumen increases, and different solvents show different dilution capacity. The bulk relaxation time of a hydrocarbon fluid is inversely proportional to its viscosity(10). NMR spectra show changes in the response from the mixture after solvent has been added.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3